K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2019

1/ n=3

31 tháng 10 2019

\(B=x^2+\frac{1}{x^2}\ge\sqrt{x^2\cdot\frac{1}{x^2}}=1\)

Dấu "=" xảy ra tại \(x=y=1\)

31 tháng 10 2019

2: Ta có: \(B=x^2+\frac{1}{x^2}\)

\(=x^2-2\cdot x\cdot\frac{1}{x}+\frac{1}{x^2}+2\)

\(=\left(x-\frac{1}{x}\right)^2+2\)

Ta có: \(\left(x-\frac{1}{x}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{1}{x}\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi

\(\left(x-\frac{1}{x}\right)^2=0\Leftrightarrow x-\frac{1}{x}=0\Leftrightarrow x=\frac{1}{x}\)\(\Leftrightarrow x=\pm1\)

Vậy: GTNN của đa thức \(B=x^2+\frac{1}{x^2}\) là 2 khi \(x=\pm1\)

NV
31 tháng 10 2019

\(A=\left(2n-5\right)\left(2n+5\right)\)

A là SNT khi và chỉ khi \(2n-5=1\)\(2n+5\) là SNT

\(2n-5=1\Rightarrow n=3\)

\(\Rightarrow2n+5=11\) (thỏa mãn)

Vậy \(n=3\)

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1