Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x-4,36}{0,125}=0,25.42,9-11,7.0,25+0,25.0,8\)
\(\Leftrightarrow\frac{2x-4,36}{0,125}=0,25.\left(42,9-11.7+0,8\right)\)
\(\Leftrightarrow\frac{2x-4,36}{0,125}=0,25.32\)
\(\Leftrightarrow\frac{2x-4,36}{0,125}=8\)
\(\Leftrightarrow2x-4,36=1\)
\(\Leftrightarrow2x=5,36\)
\(\Leftrightarrow x=2,68\)
b) \(N=\frac{1}{1.5}+\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{2005.2010}\)
\(\Leftrightarrow N=\frac{1}{5}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{2005}-\frac{1}{2010}\right)\)
\(\Leftrightarrow N=\frac{1}{5}\left(1-\frac{1}{2010}\right)\)
\(\Leftrightarrow N=\frac{1}{5}.\frac{2009}{2010}=\frac{2009}{10050}\)
Bài 1:
a)\(\frac{2\cdot x-4,36}{0,125}=0,25\cdot42,9-11,7\cdot0,25+0,25\cdot0,8\)
\(\frac{2\cdot x-4,36}{0,125}=0,25\cdot\left(42,9-11,7+0,8\right)\)
\(\frac{2\cdot x-4,36}{0,125}=0,25\cdot32\)
\(\frac{2\cdot x-4,36}{0,125}=8\)
\(2\cdot x-4,36=8\cdot0,125\)
\(2\cdot x-4,36=1\)
\(2\cdot x=1+4,36\)
\(2\cdot x=5,36\)
\(x=\frac{5,36}{2}=2,68\)
b) \(N=\frac{1}{1\cdot5}+\frac{1}{5\cdot10}+\frac{1}{10\cdot15}+\frac{1}{15\cdot20}+...+\frac{1}{2005\cdot2010}\)
\(4N=\frac{4}{1\cdot5}+\frac{4}{5\cdot10}+\frac{4}{10\cdot15}+\frac{4}{15\cdot20}+...+\frac{4}{2005\cdot2010}\)
\(4N=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{2005}-\frac{1}{2010}\)
\(4N=1-\frac{1}{2010}=\frac{2009}{2010}\)
\(N=\frac{2009}{2010}\div4=\frac{2009}{8040}\)
Bài 2:
a) ( x + 5,2 ) : 3,2 = 4,7 ( dư 0,5 )
\(x+5,2=4,7\cdot3,2+0,5\)
\(x+5,2=15,54\)
\(x=15,54-5,2=10,34\)
b)\(A=\frac{4047991-2010\cdot2009}{4050000-2011\cdot2009}\)
\(A=\frac{4047991-2010\cdot2009}{4050000-2009-2010\cdot2009}\)
\(A=\frac{4047991-2010\cdot2009}{4047991-2010\cdot2009}=1\)
Bài 3:
a) \(104,5\cdot x-14,1\cdot x+9,6\cdot x=25\)
\(x\cdot\left(104,5-14,1+9,6\right)=25\)
\(x\cdot100=25\)
\(x=\frac{25}{100}=\frac{1}{4}=0,25\)
b) \(T=\frac{2009\cdot2010+2000}{2011\cdot2010-2020}\)
\(T=\frac{2009\cdot2010+2000}{2009\cdot2010+4020-2020}\)
\(T=\frac{2009\cdot2010+2000}{2009\cdot2010+2000}=1\)
(x-1/2)*5/3=7/4-1/2
(x-1/2)*5/3=5/4
x-1/2=3/4
x = 5/4
(x+4/3)*7/4=5-7/6
(x+4/3)*7/4=23/6
x+4/3 = 46/21
x = 6/7
6/8=15/x
6*x=15*8
6*x=120
x = 20
\(\frac{6}{8}=\frac{15}{x}\)
\(\Rightarrow x=\left(15\cdot8\right):6\)
\(\Rightarrow x=20\)
a) \(\frac{1}{2}\times x-3=6\)
=> \(\frac{1}{2}\times x=6+3\)
=> \(\frac{1}{2}\times x=9\)
=>\(x=9:\frac{1}{2}\)
=> \(x=18\)
b) \(2:x=\frac{2}{5}--\frac{1}{10}\)
=> \(2:x=\frac{2}{5}+\frac{1}{10}\)
=> \(2:x=\frac{1}{2}\)
=> \(x=2:\frac{1}{2}\)
=> \(x=4\)
c) \(25-\left(2\frac{1}{2}+x\right)=10\)
=> \(2\frac{1}{2}+x=25-10\)
=> \(\frac{5}{2}+x=15\)
=>\(x=15-\frac{5}{2}\)
=> \(x=\frac{25}{2}\)
d) \(\left(x-\frac{3}{4}\right)\times3-45:9=10\)
=> \(\left(x-\frac{3}{4}\right)\times3-5=10\)
=> \(\left(x-\frac{3}{4}\right)\times3=10+5\)
=> \(\left(x-\frac{3}{4}\right)\times3=15\)
=> \(\left(x-\frac{3}{4}\right)=15:3\)
=> \(\left(x-\frac{3}{4}\right)=5\)
=> \(x=5+\frac{3}{4}\)
=> \(x=\frac{23}{4}\)
\(a,\frac{1}{2}.x-3=6\Rightarrow\frac{x}{2}=9\Rightarrow x=18\)
\(b,2:x=\frac{2}{5}-\frac{1}{10}\Rightarrow\frac{2}{x}=\frac{9}{10}\Rightarrow x=\frac{2.10}{9}=\frac{20}{9}\)
\(c,25-\left(2\frac{1}{2}+x\right)=10\Rightarrow25-\frac{5}{2}+x=10\Rightarrow x=10+\frac{5}{2}-25=-\frac{25}{2}\)
\(d,\left(x-\frac{3}{4}\right).3-45:9=10\Rightarrow\left(x-\frac{3}{4}\right).3-5=10\Rightarrow\left(x-\frac{3}{4}\right).3=15\Rightarrow x-\frac{3}{4}=5\Rightarrow x=\frac{23}{4}\)
#)Giải :
1.
Ta có : \(\frac{n+1}{n+2}>\frac{n}{n+2}>\frac{n}{n+3}\)
\(\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)
2.
a) \(x\left(104,5-14,1+9,6\right)=25\)
\(x\times100=25\)
\(x=25\div100\)
\(x=0,25\)
Bài 1 : Ta có :\(\frac{n+1}{n+2}>\frac{n}{n+2}>\frac{n}{n+3}\)
\(\Leftrightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)
Bài 2 : \(104,5\cdot x-14,1\cdot x+9,6\cdot x=25\)
\(\Leftrightarrow\left[104,5-14,1+9,6\right]\cdot x=25\)
\(\Leftrightarrow100\cdot x=25\)
\(\Leftrightarrow x=\frac{1}{4}\)
\(1+2+3+4+...+x=210\)
Số số hạng của dãy là : \((x-1):1+1=x\) số
Cho nên tổng của dãy đó là : \(\frac{x(x+1)}{2}=210\)
\(\Leftrightarrow x(x+1)=420\)
\(\Leftrightarrow x(x+1)=20\cdot21\)
\(\Leftrightarrow x=20\)
\(x-\frac{3}{4}=1-\frac{5}{6}\)
\(\Leftrightarrow x-\frac{3}{4}=\frac{1}{6}\)
\(\Leftrightarrow x=\frac{1}{6}+\frac{3}{4}=\frac{11}{12}\)