Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABD\)và \(\Delta AED\)có :
AB = AE ( gt )
^B1 = ^B2 ( BD là phân giác của ^B )
AD chung
=> \(\Delta ABD=\Delta AED\left(c.g.c\right)\)
=> \(AD=DE\)( hai cạnh tương ứng )
b) \(\Delta ABD=\Delta AED\)
=> ^BED = ^BAD = 900
c) Nối A với E . Gọi giao điểm của AE và BD là H
Xét \(\Delta ABH\)và \(\Delta EBH\)có :
AB = AE ( gt )
^B1 = ^B2 ( BD là phân giác của ^B )
AH chung
=> \(\Delta ABH=\Delta EBH\left(c.g.c\right)\)
=> ^H1 = ^H2 ( hai cạnh tương ứng ) ( 1 )
^H1 + ^H2 = 1800 ( kề bù ) ( 2 )
Từ ( 1 ) và ( 2 ) => ^H1 = ^H2 = 1800/2 = 900
=> BD vuông góc với AE ( đpcm )
a) Xét ΔABD và ΔEBD có :
BA = BE ( gt )
ABDˆ=EBDˆ ( BD là tia phân giác góc B )
BD chung
=> ΔABD = ΔEBD ( c.g.c )
=> DA = DE ( 1 cạnh tương ứng )
c) Gọi giao điểm của BD và AE là O
Xét ΔABO và ΔEBO có :
BA = BE ( gt )
ABOˆ=EBOˆ( BD là phân giác góc B )
BO chung
=> ΔABO = ΔEBO ( c.g.c )
=> AOBˆ=EOBˆ ( 2 góc tương ứng )
mà AOBˆ+EOBˆ=180o ( kề bù )
=> AOBˆ=EOBˆ=180o: 2=90o
=> AE ⊥ BO hay AE ⊥ BD
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: ΔABD=ΔEBD
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
Xét ΔDAF và ΔDEC có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DF=DC
Do đó: ΔDAF=ΔDEC
=>AF=CE
c: Ta có: ΔDAF=ΔDEC
=>\(\widehat{DAF}=\widehat{DEC}\)
mà \(\widehat{DEC}=90^0\)
nên \(\widehat{DAF}=90^0\)
Ta có: \(\widehat{BAD}+\widehat{DAF}=\widehat{BAF}\)
=>\(\widehat{BAF}=90^0+90^0=180^0\)
=>B,A,F thẳng hàng
Xét ΔBFC có BA/AF=BE/EC
nên AE//FC
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE
b: ΔBAD=ΔBED
=>góc BAD=góc BED=90 độ
=>DE vuông góc BC
c: góc EDC+góc C=90 độ
góc B+góc C=90 độ
=>góc EDC=góc ABC
a) Ta có: \(BC^2=13^2=169\)
\(AB^2+AC^2=5^2+12^2=169\)
Do đó: \(BC^2=AB^2+AC^2\)(=169)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
a) Xét tam giác ABD và tam giác EBD:
+ AB = EB (gt).
+ BD chung.
+ \(\widehat{ABD}=\widehat{EBD}\) (BD là phân giác).
\(\Rightarrow\) Tam giác ABD = Tam giác EBD (c - g - c).
b) Tam giác ABD = Tam giác EBD (cmt).
\(\Rightarrow\) \(\widehat{BAD}=\widehat{BED}\) (2 góc tương ứng).
Mà \(\widehat{BAD}=90^o\) (Tam giác ABC vuông tại A).
\(\Rightarrow\) \(\widehat{BED}=90^o\)
c) Xét tam giác ABE: BA = BE (gt).
\(\Rightarrow\) Tam giác ABE cân tại B.
Mà BD là phân giác (gt).
\(\Rightarrow\) BD là đường cao (Tính chất tam giác cân).
\(\Rightarrow\) \(BD\perp AE.\)
1,a, cm: tam giác BEC và tg BDC(c.g.c0
b, cm : tg ABE= tg ACD(c,g.c)
c, cm: BK=KC ( cm: tg BKD= tg CED)
CHO tam giác ABC có A =90 ,AB=8CM,AC=6CM
a, Tính BC
b, Trên cạnh AC lấy điểm E sao cho AE=2CM,, Trên tia đối của tia AB lấy điểm D sao cho AD=AB.chứng minh tam giác BEC=DEC
c, Chuwsngh minh DE ĐI QUA trung điểm cạnh BC