K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2018

Bài  1

Gọi a (m) là chiều dài mảnh đất (0<a<100), b (m) là chiều rộng của mảnh đất (0<b<100)

Nửa chu vi mảnh đất: a+ b = 50 (1)

Theo đề bài ta có: 5b - 2a=40 (2)

Từ (1) (2) suy ra hệ pt . Ta giải pt được a=30, b=20 

Vậy: CR=20m, CD=30m.

25 tháng 5 2018

làm giùm bài 2 đi

8 tháng 4 2021

Theo Cô si       4x+\frac{1}{4x}\ge2  , đẳng thức xảy ra khi và chỉ khi   4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}). Do đó

                                         A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016

                                        A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014

                                        A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014

Hơn nữa    A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.  \Leftrightarrow x=\dfrac{1}{4} .

Vậy  GTNN  =  2014

 Nửa chu vi miếng đất hình chữ nhật là: 100:2=50(m) 

Gọi chiều dài miếng đất là: x(m) 

      chiều rộng miếng đất là: y(m) 

                (y<x<50) 

Miếng đất hình chữ nhật có nửa chu vi là 50m

⇒ Phương trình: x+y=50 (1) 

5 lần chiều rộng hơn 2 lần chiều dài 40m.

⇒ Phương trình: −2x+5y=40 (2) 

Từ (1) và (2) ta có hệ phương trình:

    {x+y=50−2x+5y=40 

⇔ {y=50−x−2x+5(50−x)=40 

⇔ {y=50−x−2x+250−5x=40 

⇔ {y=50−x−2x−5x=40−250 

⇔ {y=50−x−7x=−210 

⇔ {y=50−30x=30 

⇔ {y=20(Nhận)x=30(Nhận) 

Vậy miếng đất hình chữ nhật có chiều dài là 30m và chiều rộng 20m

25 tháng 1 2022

loading...  

2 tháng 6 2015

a) (d) cắt (P) tại A => A thuộc d và (P)

xA= 3; A \(\in\) d=> yA = -xA\(\frac{3}{2}\) => yA = -3 - \(\frac{3}{2}\) = \(\frac{-9}{2}\)

Mặt khác, A  \(\in\) (P) => yA = axA2 => \(\frac{-9}{2}\) = a. 32 => a = \(\frac{-9}{2}\): 9 = \(\frac{-1}{2}\)

Vậy (P) có dạng y = \(\frac{-1}{2}\).x2

+) Vẽ đồ thị: 

x-2-1012
y-2\(\frac{-1}{2}\)0\(\frac{-1}{2}\)-2

(P) đí qua 4 điểm (-2;-2); (-1;\(\frac{-1}{2}\)); (0;0); (1;\(\frac{-1}{2}\)); (2;-2)

b) Phương trình hoành độ giao điểm: \(\frac{-1}{2}\).x2 = - x - \(\frac{3}{2}\)

                                               <=> -x2 + 2x + 3 = 0 

                                              <=> x = -1 hoặc x = 3 (Vì a - b + c = -1 - 2 + 3 = 0)

=> xB = -1 => yB = \(\frac{-1}{2}\).(-1)2 = \(\frac{-1}{2}\)

Vậy B (-1;\(\frac{-1}{2}\))

 

 

a: loading...

b: PTHĐGĐ là:

x^2+x-2=0

=>(x+2)(x-1)=0

=>x=-2 hoặc x=1

=>y=4 hoặc y=1

1: Để (d)//(d') thì \(\left\{{}\begin{matrix}m-3=1\\2\ne-5\left(đúng\right)\end{matrix}\right.\)

=>m-3=1

=>m=4

Thay m=4 vào (d), ta được:

\(y=\left(4-3\right)x+2=x+2\)

Vẽ đồ thị:

loading...

2: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(m-3\right)x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x\left(m-3\right)=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-\dfrac{2}{m-3}\\y=0\end{matrix}\right.\)

Vậy: \(A\left(-\dfrac{2}{m-3};0\right)\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=\left(m-3\right)\cdot x+2=0\left(m-3\right)+2=2\end{matrix}\right.\)

vậy: B(0;2)

\(OA=\sqrt{\left(-\dfrac{2}{m-3}-0\right)^2+\left(0-0\right)^2}\)

\(=\sqrt{\left(-\dfrac{2}{m-3}\right)^2+0^2}=\dfrac{2}{\left|m-3\right|}\)

\(OB=\sqrt{\left(0-0\right)^2+\left(2-0\right)^2}=2\)

Vì Ox\(\perp\)Oy

nên OA\(\perp\)OB

=>ΔOAB vuông tại O

=>\(S_{OBA}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot2\cdot\dfrac{2}{\left|m-3\right|}=\dfrac{2}{\left|m-3\right|}\)

Để \(S_{OAB}=2\) thì \(\dfrac{2}{\left|m-3\right|}=2\)

=>|m-3|=1

=>\(\left[{}\begin{matrix}m-3=1\\m-3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=4\\m=2\end{matrix}\right.\)