Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
1.
\(2P=2\sqrt{x-2}+4\sqrt{x+1}-2x+4016\)
\(=-\left(x-2-2\sqrt{x-2}+1\right)-\left(x+1-4\sqrt{x+1}+4\right)+4020\)
\(=-\left(\sqrt{x-2}-1\right)^2-\left(\sqrt{x+1}-2\right)^2+4020\)
2.
\(\sqrt{u}+\sqrt{v}=7\Rightarrow u+v+2\sqrt{uv}=49\)
\(\Rightarrow u+v+2\sqrt{6}=49\Rightarrow u+v=49-2\sqrt{6}\)
\(\Rightarrow\left|u-v\right|=\sqrt{\left(u-v\right)^2}=\sqrt{\left(u+v\right)^2-4uv}=\sqrt{\left(49-2\sqrt{6}\right)^2-4.6}=...\)
3.
\(\left(a-2\right)^2+\left(b-1\right)^2=545\)
\(P=23\left(a-2\right)+4\left(b-1\right)+2063\)
\(\Rightarrow\left(P-2063\right)^2=\left[23\left(a-2\right)+4\left(b-1\right)\right]^2\le\left(23^2+4^2\right)\left[\left(a-2\right)^2+\left(b-1\right)^2\right]\)
Ta có hpt \(\left\{{}\begin{matrix}xy+3y-5x-15=xy\\2xy+30x-y^2-15y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x=3y-15\\6\left(3y-15\right)-y^2-15y=0\end{matrix}\right.\)
Ta có pt (2) \(\Leftrightarrow3y-y^2-80=0\Leftrightarrow y^2-3y+80=0\left(VN\right)\)
=> hpy vô nghiệm
c) Ta có hpt \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+xy+x+y=11\end{matrix}\right.\)
Đặt j\(xy\left(x+y\right)=a;xy+x+y=b\), ta có hpt
\(\left\{{}\begin{matrix}ab=30\\a+b=11\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=5;b=6\\a=6;b=5\end{matrix}\right.\)
với a=5;b=6, ta có \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=1;x+y=5\\xy=5;x+y=1\end{matrix}\right.\)
đến đây thì thế y hoặc x ra pt bậc 2, còn TH còn lại bn tự giải nhé !
a, #Góp ý từ nhiều người nhưng họ không giải nên t làm giùm
ĐK: \(x\le3\)
\(\left\{{}\begin{matrix}x^2+y^2+1=2\left(xy-x+y\right)\left(1\right)\\x^3+3y^2+5x-12=\left(12-y\right)\sqrt{3-x}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^2+y^2+1-2xy+2x-2y=0\)
\(\Leftrightarrow\left(x-y+1\right)^2=0\) \(\Leftrightarrow x-y+1=0\Leftrightarrow y=x+1\) Thay vào (2)
\(\left(2\right)\)\(\Leftrightarrow x^3+3\left(x+1\right)^2+5x-12=\left[12-\left(x+1\right)\right]\sqrt{3-x}\)
\(\Leftrightarrow x^3+3x^2+11x-9=\left(11-x\right)\sqrt{3-x}\)
\(\Leftrightarrow x^3+3x^2+8x=\left(11-x\right)\sqrt{3-x}+3\left(3-x\right)\)
\(\Leftrightarrow x^3+3x^2+8x=\left(3-x\right)\sqrt{3-x}+8\sqrt{3-x}+3\left(3-x\right)\)
\(\Leftrightarrow x^3+3x^2+8x=\sqrt{\left(3-x\right)^3}+3\sqrt{\left(3-x\right)^2}+8\sqrt{3-x}\)
\(\Leftrightarrow x=\sqrt{3-x}\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2+x-3=0\end{matrix}\right.\) \(\Rightarrow x=\frac{-1+\sqrt{13}}{2}\left(tm\right)\Rightarrow y=\frac{1+\sqrt{13}}{2}\)
Vậy...
Akai Haruma, No choice teen, Arakawa Whiter, Phạm Hoàng Lê Nguyên, Vũ Minh Tuấn, tth, HISINOMA KINIMADO, Nguyễn Việt Lâm
Mn giúp e vs ạ! thanks!
Câu nào biết thì mink làm, thông cảm !
Bài 1:
1) Cho \(a=1\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}2x=5\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\\frac{5}{2}+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{1}{2}\end{cases}}\)
2) Cho \(a=\sqrt{3}\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\sqrt{3}-y=2\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}3x-y\sqrt{3}=2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}4x=3+2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\\frac{3+2\sqrt{3}}{4}+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\y=\frac{-2+3\sqrt{3}}{4}\end{cases}}\)
Bữa sau làm tiếp
Bài 1.
\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)
\(x_0^2+y_0^2=9m\)
\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)
\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)
\(\Leftrightarrow2m^2-7m+5=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )
a: \(\left\{{}\begin{matrix}4\sqrt{5}-y=3\sqrt{2}\\10x+\sqrt{2}\cdot y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=4\sqrt{5}-3\sqrt{2}\\10x+\sqrt{2}\left(4\sqrt{5}-3\sqrt{2}\right)=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=4\sqrt{5}-3\sqrt{2}\\10x=-1-4\sqrt{10}+6=5-4\sqrt{10}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=4\sqrt{5}-3\sqrt{2}\\x=\dfrac{1}{2}-\dfrac{2\sqrt{10}}{5}\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}\dfrac{3}{4}x+\dfrac{2}{5}y=2,3\\x-\dfrac{3}{5}y=0,8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{9}{4}x+\dfrac{6}{5}y=6,9\\2x-\dfrac{6}{5}y=1,6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{17}{4}x=8,5\\x-0,6y=0,8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=8,5:\dfrac{17}{4}=8,5\cdot\dfrac{4}{17}=2\\0,6y=x-0,8=2-0,8=1,2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
c: ĐKXĐ: y>2
\(\left\{{}\begin{matrix}\left|x-1\right|-\dfrac{3}{\sqrt{y-2}}=-1\\2\left|1-x\right|+\dfrac{1}{\sqrt{y-2}}=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2\left|x-1\right|-\dfrac{6}{\sqrt{y-2}}=-2\\2\left|x-1\right|+\dfrac{1}{\sqrt{y-2}}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{7}{\sqrt{y-2}}=-7\\2\left|1-x\right|+\dfrac{1}{\sqrt{y-2}}=5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\sqrt{y-2}=1\\2\left|x-1\right|=5-1=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-2=1\\\left|x-1\right|=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=3\\x-1\in\left\{2;-2\right\}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=3\\x\in\left\{3;-1\right\}\end{matrix}\right.\left(nhận\right)\)
Câu 1:
\(ĐK:x\ge2\)
Áp dụng BĐT cauchy ta có:
\(\left(x+1\right)+4\ge2\sqrt{4\left(x+1\right)}=4\sqrt{x+1}\\ \Leftrightarrow2\sqrt{x+1}\le\dfrac{x+5}{2}\)
Ta có \(\left(x-2\right)+1\ge2\sqrt{x-2}\Leftrightarrow\sqrt{x-2}\le\dfrac{x-1}{2}\)
\(\Leftrightarrow P\le\dfrac{x+5}{2}+\dfrac{x-1}{2}-x+2013=x+2-x+2013=2015\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+1=4\\x-2=1\end{matrix}\right.\Leftrightarrow x=3\)
Câu 2:
\(HPT\Leftrightarrow\left\{{}\begin{matrix}10\sqrt{x}+15y^3=140\\4y^3-10\sqrt{x}=12\end{matrix}\right.\left(x\ge0\right)\\ \Leftrightarrow19y^3=152\\ \Leftrightarrow y^3=8\Leftrightarrow y=2\\ \Leftrightarrow2\sqrt{x}+24=28\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)
Vậy \(\left(x;y\right)=\left(4;2\right)\)
Câu 3:
\(HPT\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\my+2m+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+2\\y=\dfrac{3-2m}{m+1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{m+1}\\x=\dfrac{3-2m}{m+1}\end{matrix}\right.\\ \Leftrightarrow xy=\dfrac{5\left(3-2m\right)}{\left(m+1\right)^2}\)
Đặt \(xy=t\)
\(\Leftrightarrow m^2t+2mt+t=15-10m\\ \Leftrightarrow m^2t+2m\left(t+5\right)+t-15=0\)
PT có nghiệm nên \(\Delta'=\left(t+5\right)^2-t\left(t-15\right)\ge0\)
\(\Leftrightarrow10t+25+15t\ge0\Leftrightarrow t\ge-1\)
Vậy \(xy_{min}=-1\Leftrightarrow\dfrac{5\left(2m-3\right)}{\left(m+1\right)^2}=1\Leftrightarrow m^2-8m+16=0\Leftrightarrow m=4\)