K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2018

a)  \(\left(2x+1\right)\left(3x-2\right)=\left(2x+1\right)\left(5x-8\right)\)

\(\Leftrightarrow\)\(\left(2x+1\right)\left(3x-2\right)-\left(2x+1\right)\left(5x-8\right)=0\)

\(\Leftrightarrow\)\(\left(2x+1\right)\left(3x-2-5x+8\right)=0\)

\(\Leftrightarrow\)\(\left(2x+1\right)\left(6-2x\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}2x+1=0\\6-2x=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-0,5\\x=3\end{cases}}\)

Vậy...

b)   \(ĐKXĐ:\)  \(x\ne-2;\) \(x\ne4\)

          \(\frac{3}{x+2}+\frac{2}{x-4}=0\)

\(\Leftrightarrow\)\(\frac{3\left(x-4\right)}{\left(x+2\right)\left(x-4\right)}+\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-4\right)}=0\)

\(\Leftrightarrow\)\(\frac{3x-12+2x+4}{\left(x+2\right)\left(x-4\right)}=0\)

\(\Leftrightarrow\)\(\frac{5x-8}{\left(x+2\right)\left(x-4\right)}=0\)

\(\Rightarrow\)\(5x-8=0\)

\(\Leftrightarrow\)\(x=\frac{8}{5}\) (T/m đkxđ)

Vậy...

c)  \(x^3+4x^2+4x+3=0\)

\(\Leftrightarrow\)\(x^3+3x^2+x^2+3x+x+3=0\)

\(\Leftrightarrow\)\(x^2\left(x+3\right)+x\left(x+3\right)+\left(x+3\right)=0\)

\(\Leftrightarrow\)\(\left(x+3\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\)\(x+3=0\)  (do  \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) \(\forall x\))

\(\Leftrightarrow\)\(x=-3\)

Vậy...

26 tháng 4 2018

có thể làm giùm 3 câu còn lại ko bn:)

22 tháng 4 2020

d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0

Đặt x2 + 4x + 8 = t ta được:

t2 + 3xt + 2x2 = 0

\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0

\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0

\(\Leftrightarrow\) (t + x)(t + 2x) = 0

Thay t = x2 + 4x + 8 ta được:

(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0

\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0

\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0

\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0

Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x

\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)

Vậy S = {-4; -2}

Mình giúp bn phần khó thôi!

Chúc bn học tốt!!

22 tháng 4 2020

c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)

\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

⇒x2+x+1+2x2-5=4x-4

⇔3x2-3x=0

⇔3x(x-1)=0

⇔x=0 (TMĐK) hoặc x=1 (loại)

Vậy tập nghiệm của phương trình đã cho là:S={0}

3 tháng 8 2020

\(5X\left(X-2020\right)+X=2020\)

\(\Leftrightarrow5X^2-10100X+X=2020\)

\(\Leftrightarrow5X^2-10099X=2020\)

\(\Leftrightarrow5X^2-10099X-2020=0\)

\(\Leftrightarrow5X^2-10100X+x-2020=0\)

\(\Leftrightarrow5X\left(X-2020\right)+X-2020=0\)

\(\Leftrightarrow\left(X-2020\right)\left(5X+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-\frac{1}{5}\end{cases}}\)

3 tháng 8 2020

\(4\left(x-5\right)^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left[2\left(x-5\right)\right]^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left[2\left(x-5\right)-2x-1\right]\left[2\left(x-5\right)+2x+1\right]=0\)

\(\Leftrightarrow\left(2x-10-2x-1\right)\left(2x-10+2x+1\right)=0\)

\(\Leftrightarrow-11\left(4x-9\right)=0\)

\(\Leftrightarrow x=\frac{9}{4}\)

Dạng 1: Phương trình bậc nhất Bài 1: Giải các phương trình sau : a) 0,5x (2x - 9) = 1,5x (x - 5) b) 28 (x - 1) - 9 (x - 2) = 14x c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2 e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\) f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\) g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\) h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\) i)...
Đọc tiếp

Dạng 1: Phương trình bậc nhất

Bài 1: Giải các phương trình sau :

a) 0,5x (2x - 9) = 1,5x (x - 5)

b) 28 (x - 1) - 9 (x - 2) = 14x

c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x

d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2

e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\)

f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\)

g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\)

h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\)

i) \(\frac{x-1}{2}+\frac{x+3}{3}=\frac{5x+3}{6}\)

j) \(\frac{x-3}{5}-1=\frac{4x+1}{4}\)

Dạng 2: Phương trình tích

Bài 2: Giải phương trình sau :

a) (x + 1) (5x + 3) = (3x - 8) (x - 1)

b) (x - 1) (2x - 1) = x(1 - x)

c) (2x - 3) (4 - x) (x - 3) = 0

d) (x + 1)2 - 4x2 = 0

e) (2x + 5)2 = (x + 3)2

f) (2x - 7) (x + 3) = x2 - 9

g) (3x + 4) (x - 4) = (x - 4)2

h) x2 - 6x + 8 = 0

i) x2 + 3x + 2 = 0

j) 2x2 - 5x + 3 = 0

k) x (2x - 7) - 4x + 14 = 9

l) (x - 2)2 - x + 2 = 0

Dạng 3: Phương trình chứa ẩn ở mẫu

Bài 3: Giải phương trình sau :

\(\frac{90}{x}-\frac{36}{x-6}=2\) \(\frac{3}{x+2}-\frac{2}{x-3}=\frac{8}{\left(x-3\right)\left(x+2\right)}\)
\(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
\(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\) \(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
\(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\) \(\frac{x}{x+1}-\frac{2x-3}{1-x}=\frac{3x^2+5}{x^2-1}\)

0

d: =>4x+6=15x-12

=>4x-15x=-12-6=-18

=>-11x=-18

hay x=18/11

e: =>\(45x+27=12+24x\)

=>21x=-15

hay x=-5/7

f: =>35x-5=96-6x

=>41x=101

hay x=101/41

g: =>3(x-3)=90-5(1-2x)

=>3x-9=90-5+10x

=>3x-9=10x+85

=>-7x=94

hay x=-94/7

24 tháng 1 2022

làm rõ ra giúp với ạ, ghi v k hỉu j hết ;-;

ĐKXĐ : \(\hept{\begin{cases}x-2\ne0\\3-4x\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne2\\x\ne\frac{3}{4}\end{cases}}}\)

\(\frac{5}{x-2}+\frac{6}{3-4x}=0\)

\(\frac{5\left(3-4x\right)}{\left(x-2\right)\left(3-4x\right)}+\frac{6\left(x-2\right)}{\left(3-4x\right)\left(x-2\right)}=0\)

\(15-20x+6x-12=0\)

\(3-14x=0\Leftrightarrow14x=3\Leftrightarrow x=\frac{3}{14}\)theo ĐKXĐ : x thỏa mãn 

27 tháng 4 2018

a đkxđ khi x khác 2 và -2     \(\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{\left(x+2\right)^2-\left(x-2\right)^2}{x^2-4}=\frac{4}{x^2-4}\)

\(\Rightarrow\left(x+2\right)^2-\left(x-2\right)^2=4\)\(\Rightarrow\left(x+2-x+2\right)\left(x+2+x-2\right)=4\Rightarrow4\cdot2x=4\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)(thảo mãn)

27 tháng 4 2018

b đkxđ khi x+3 khác 0 suy ra x khác -3

\(\frac{x^2-9}{x+3}=\frac{\left(x-3\right)\left(x+3\right)}{x+3}=x-3=0\Rightarrow x=3\)(thảo mãn)

Bài 1:

d)ĐKXĐ: \(x\ne8\)

Ta có: \(\frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{13x-102}{3x-24}\)

\(\Leftrightarrow\frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}-\frac{13x-102}{3x-24}=0\)

\(\Leftrightarrow\frac{3}{2\left(x-8\right)}+\frac{3x-20}{x-8}+\frac{1}{8}-\frac{13x-102}{3\left(x-8\right)}=0\)

MTC=24(x-8)

\(\Leftrightarrow\frac{36}{24\left(x-8\right)}+\frac{72x-480}{24\left(x-8\right)}+\frac{3x-24}{24\left(x-8\right)}-\frac{104x-816}{24\left(x-8\right)}=0\)

\(\Leftrightarrow36+72x-480+3x-24-104x+816=0\)

\(\Leftrightarrow348-29x=0\)

\(\Leftrightarrow-29x+348=0\)

\(\Leftrightarrow x=\frac{-348}{-29}=12\)

Vậy: x=12

e) ĐKXĐ: \(x\ne\pm1\)

Ta có: \(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}\)

\(\Leftrightarrow\frac{6}{\left(x-1\right)\left(x+1\right)}+5-\frac{8x-1}{4x+4}+\frac{12x-1}{4-4x}=0\)

\(\Leftrightarrow\frac{6}{\left(x-1\right)\left(x+1\right)}+5-\frac{8x-1}{4\left(x+1\right)}+\frac{12x-1}{4\left(1-x\right)}=0\)

MTC=4(x+1)(x-1)

\(\Leftrightarrow\frac{24}{4\left(x-1\right)\left(x+1\right)}+\frac{20x^2-20}{4\left(x-1\right)\left(x+1\right)}-\frac{8x^2-9x+1}{4\left(x-1\right)\left(x+1\right)}-\frac{12x^2-11x-1}{4\left(x-1\right)\left(x+1\right)}=0\)

\(\Leftrightarrow24+20x^2-20-8x^2+9x-1-12x^2+11x+1=0\)

\(\Leftrightarrow20x+4=0\)

\(\Leftrightarrow20x=-4\)

\(\Leftrightarrow x=-\frac{4}{20}=-0,2\)(loại)

Vậy: x không có giá trị

g) Ta có: \(\frac{\frac{x+1}{x-1}-\frac{x-1}{x+1}}{1+\frac{x+1}{x-1}}=\frac{1}{2}\)

\(\Leftrightarrow\frac{\frac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}}{\frac{x-1}{x-1}+\frac{x+1}{x-1}}-\frac{1}{2}=0\)

\(\Leftrightarrow\frac{\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}}{\frac{2x}{x-1}}-\frac{1}{2}=0\)

\(\Leftrightarrow\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-1}{2x}-\frac{1}{2}=0\)

\(\Leftrightarrow\frac{4x\cdot\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\cdot2x}-\frac{1}{2}=0\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{2}=0\)

MTC=2(x+1)

\(\Leftrightarrow\frac{2}{2\left(x+1\right)}-\frac{x+1}{2\left(x+1\right)}=0\)

\(\Leftrightarrow2-x+1=0\)

\(\Leftrightarrow1-x=0\)

\(\Leftrightarrow x=1\)(loại vì không thỏa mãn ĐKXĐ)

Vậy: x không có giá trị

4 tháng 5 2019

b, \(\frac{1}{x-1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\left(ĐKXĐ:x\ne\pm1;x\ne2\right)\)

\(\Leftrightarrow\)\(\frac{1}{x-1}+\frac{5}{2-x}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)

\(\Leftrightarrow\)\(\frac{\left(x+1\right)\left(2-x\right)+5\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(2-x\right)\left(x-1\right)}=\frac{15\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(2-x\right)}\)

Suy ra:

\(\Leftrightarrow\)(x+1)(2-x)+5(x-1)(x+1) = 15(x-1)

\(\Leftrightarrow\)2x-x2-x+2+5x2-5 = 15x-15

\(\Leftrightarrow\)2x-x2-x+5x2-15x = -15+5-2

\(\Leftrightarrow\)4x2-14x = -12

\(\Leftrightarrow4x^2-14x+12=0\)

\(\Leftrightarrow4x^2-8x-6x+12=0\)

\(\Leftrightarrow\)4x(x-2) - 6(x-2) = 0

\(\Leftrightarrow\left(x-2\right)\left(4x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(kotm\right)\\x=\frac{3}{2}\left(tm\right)\end{matrix}\right.\)

Vậy pt có nghiệm duy nhất x = \(\frac{3}{2}\)