K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2) Ta có: \(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}+\dfrac{12}{\sqrt{6}-3}-\sqrt{6}\)

\(=3\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-4\left(3+\sqrt{6}\right)-\sqrt{6}\)

\(=3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}-\sqrt{6}\)

\(=-11\)

3) Ta có: \(\left(\dfrac{3}{\sqrt{5}-\sqrt{2}}+\dfrac{4}{\sqrt{6}+\sqrt{2}}\right)\left(\sqrt{3}-1\right)^2\)

\(=\left(\sqrt{5}+\sqrt{2}+\sqrt{6}-\sqrt{2}\right)\left(4-2\sqrt{3}\right)\)

\(=\left(\sqrt{6}+\sqrt{5}\right)\left(4-2\sqrt{3}\right)\)

\(=4\sqrt{6}-6\sqrt{2}+4\sqrt{5}-2\sqrt{15}\)

12 tháng 7 2021

còn câu 1

1 tháng 10 2023

\(A=\left(2+\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}\right)\left(2+\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}\right)\)

\(A=\left[2-\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}\right]\left[2+\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}+3}\right]\)

\(A=\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)\)

\(A=2^2-\left(\sqrt{5}\right)^2\)

\(A=4-5\)

\(A=-1\)

____

\(B=\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)

\(B=\left[\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\dfrac{4\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}-\dfrac{12\left(3+\sqrt{6}\right)}{\left(3+\sqrt{6}\right)\left(3-\sqrt{6}\right)}\right]\left(\sqrt{6}+11\right)\)

\(B=\left[\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{2}-\dfrac{12\left(3+\sqrt{6}\right)}{3}\right]\left(\sqrt{6}+11\right)\)

\(B=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)

\(B=\left(\sqrt{6}-11\right)\left(\sqrt{6}+11\right)\)

\(B=6-121\)

\(B=-115\)

21 tháng 7 2023

a) \(\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}\)

\(=\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}}\)

\(=\dfrac{\sqrt{\left(3-\sqrt{5}\right)^2}}{\sqrt{3^2-\left(\sqrt{5}\right)^2}}\)

\(=\dfrac{\left|3-\sqrt{5}\right|}{\sqrt{9-5}}\)

\(=\dfrac{3-\sqrt{5}}{2}\)

b) \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)

\(=\sqrt{\dfrac{\left(2-\sqrt{3}\right)^2}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}\)

\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{2^2-\left(\sqrt{3}\right)^2}}\)

\(=\dfrac{\left|2-\sqrt{3}\right|}{\sqrt{4-3}}\)

\(=\dfrac{2-\sqrt{3}}{1}\)

\(=2-\sqrt{3}\)

a: \(=\sqrt{\dfrac{\left(3-\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}}=\dfrac{3-\sqrt{5}}{2}\)

b: \(=\sqrt{\dfrac{\left(2-\sqrt{3}\right)^2}{1}}=2-\sqrt{3}\)

d: \(=\left(-3+3\sqrt{6}+4+2\sqrt{6}-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)

=(căn 6-11)(căn 6+11)

=6-121=-115

30 tháng 9 2023

a) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{5+2\sqrt{6}}\)

\(=\left|\sqrt{3}-2\right|+\sqrt{\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}\)

\(=\left(\sqrt{3}-\sqrt{2}\right)+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}\)

\(=2\sqrt{3}\)

b) \(\dfrac{\sqrt{6}-\sqrt{2}}{\sqrt{3}-1}-\sqrt{2}\)

\(=\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\sqrt{2}\)

\(=\sqrt{2}-\sqrt{2}\)

\(=0\)

c) \(\left(2+\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}\right)\cdot\left(2+\dfrac{5-3\sqrt{5}}{3-\sqrt{5}}\right)\)

\(=\left[2-\dfrac{\sqrt{5}\left(2-\sqrt{5}\right)}{2-\sqrt{5}}\right]\cdot\left[2-\dfrac{\sqrt{5}\left(3-\sqrt{5}\right)}{3-\sqrt{5}}\right]\)

\(=\left(2-\sqrt{5}\right)\left(2-\sqrt{5}\right)\)

\(=4-4\sqrt{5}+5\)

\(=9-4\sqrt{5}\)

d) \(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)

\(=\left[\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\dfrac{4\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}-\dfrac{12\left(3+\sqrt{6}\right)}{\left(3-\sqrt{6}\right)\left(3+\sqrt{6}\right)}\right]\left(\sqrt{6}+11\right)\)

\(=\left[\dfrac{15\left(\sqrt{6}-1\right)}{5}+\dfrac{4\left(\sqrt{6}+2\right)}{6-4}-\dfrac{12\left(3+\sqrt{6}\right)}{9-6}\right]\left(\sqrt{6}+11\right)\)

\(=\left(3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)

\(=\left(\sqrt{6}-11\right)\left(\sqrt{6}+11\right)\)

\(=6-121\)

\(=-115\)

a: \(=\sqrt{5}+2+\sqrt{3}+1-\sqrt{5}-\sqrt{3}=3\)

b: \(=\left(-\sqrt{5}-2+\sqrt{5}-\sqrt{3}\right)\cdot\left(2\sqrt{3}+3\right)\)

\(=-\sqrt{3}\left(2+\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)\)

\(=-\sqrt{3}\left(7+4\sqrt{3}\right)=-7\sqrt{3}-12\)

c: \(=\dfrac{\sqrt{2}+\sqrt{3}+2}{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}=\dfrac{1}{1+\sqrt{2}}=\sqrt{2}-1\)

10 tháng 7 2023

\(\dfrac{6-\sqrt{6}}{\sqrt{6}-1}+\dfrac{6-\sqrt{6}}{\sqrt{6}}\)

\(=\dfrac{\sqrt{6}\cdot\sqrt{6}-\sqrt{6}}{\sqrt{6}-1}+\dfrac{\sqrt{6}\cdot\sqrt{6}-\sqrt{6}}{\sqrt{6}}\)

\(=\dfrac{\sqrt{6}\left(\sqrt{6}-1\right)}{\sqrt{6}-1}+\dfrac{\sqrt{6}\left(\sqrt{6}-1\right)}{\sqrt{6}}\)

\(=\dfrac{\sqrt{6}}{1}+\dfrac{\sqrt{6}-1}{1}\)

\(=\sqrt{6}+\sqrt{6}-1\)

\(=2\sqrt{6}-1\)

=======================

\(\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{3}{\sqrt{18}+2\sqrt{3}}\)

\(=\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{3}{\sqrt{6}\cdot\sqrt{3}+\sqrt{6}\cdot\sqrt{2}}\)

\(=\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{3}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}\)

\(=\dfrac{\sqrt{6}\left(\sqrt{2}+\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}-\dfrac{3\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)

\(=\dfrac{\sqrt{6}\left(\sqrt{2}+\sqrt{3}\right)-3\left(\sqrt{2}-\sqrt{3}\right)}{-\sqrt{6}}\)

\(=\dfrac{2\sqrt{3}+3\sqrt{2}-3\sqrt{2}+3\sqrt{3}}{-\sqrt{6}}\)

\(=\dfrac{5\sqrt{3}}{-\sqrt{6}}=-\dfrac{5}{\sqrt{2}}\)

1: \(=\sqrt{6}+\sqrt{6}+1=2\sqrt{6}+1\)

2: \(=\dfrac{6\left(1-\sqrt{3}\right)}{1-\sqrt{3}}+\dfrac{3\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=6+3=9\)

3: \(=\sqrt{3}+1-\sqrt{3}=1\)

 

NV
13 tháng 8 2021

\(A=\left(\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-\dfrac{\sqrt{5}\left(\sqrt{3}-\sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right).\left(\sqrt{2}+\sqrt{5}\right)\)

\(=\left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}+\sqrt{5}\right)=2-5=-3\)

\(B=\dfrac{12\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}-\dfrac{2\sqrt{3}.\sqrt{3}}{\sqrt{3}}+\dfrac{3}{\sqrt{2}}-\dfrac{3}{\sqrt{3}}\)

\(=\dfrac{12\left(3-\sqrt{3}\right)}{6}-2\sqrt{3}+\dfrac{3\sqrt{2}}{2}-\sqrt{3}\)

\(=2\left(3-\sqrt{3}\right)-3\sqrt{3}+\dfrac{3\sqrt{2}}{2}=6-5\sqrt{3}+\dfrac{3\sqrt{2}}{2}\) (câu này khả năng đề sai, dấu \(\sqrt{3}.\sqrt{2}\) ở mẫu cuối cùng là dấu trừ mới hợp lý)

\(C=\left(\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\dfrac{3}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)^2}\)

Dấu giữa 2 dấu ngoặc là dấu chia sẽ hợp lý hơn

19 tháng 6 2017

a) \(\dfrac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)

\(=\dfrac{\left(245-100\sqrt{6}+98\sqrt{6}-240\right)\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}}{9\sqrt{3}-11\sqrt{2}}\)

\(=\dfrac{\left(5-2\sqrt{6}\right)\left(\sqrt{3}-\sqrt{2}\right)}{9\sqrt{3}-11\sqrt{2}}\)

\(=\dfrac{5\sqrt{3}-5\sqrt{2}-2\sqrt{18}+2\sqrt{12}}{9\sqrt{3}-11\sqrt{2}}\)

\(=\dfrac{5\sqrt{3}-5\sqrt{2}-6\sqrt{2}+4\sqrt{3}}{9\sqrt{3}-11\sqrt{2}}\)

\(=\dfrac{9\sqrt{3}-11\sqrt{2}}{9\sqrt{3}-11\sqrt{2}}\)

\(=1\)

19 tháng 6 2017

b)

\(\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{2}{\sqrt{6}}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)

\(=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{2\sqrt{6}}{6}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)

\(=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{\sqrt{6}}{3}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)

\(=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{3\sqrt{3\left(2+\sqrt{3}\right)}-2\sqrt{18}+3\sqrt{2+\sqrt{3}}}{6\sqrt{3}}}\)

\(=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{3\sqrt{6+3\sqrt{3}-6\sqrt{2}+3\sqrt{2+\sqrt{3}}}}{6\sqrt{3}}}\)

\(=\dfrac{3\sqrt{\left(2+\sqrt{3}\right)\cdot3}}{3\sqrt{6+3\sqrt{3}}-6\sqrt{2}+3\sqrt{2+\sqrt{3}}}\)

\(=\dfrac{3\sqrt{\left(2+\sqrt{3}\right)\cdot3}}{3\left(\sqrt{6+3\sqrt{3}}-2\sqrt{2}+\sqrt{2+\sqrt{3}}\right)}\)

\(=\dfrac{\sqrt{\left(2+\sqrt{3}\right)\cdot3}}{\sqrt{6+3\sqrt{3}}-2\sqrt{2}+\sqrt{2+\sqrt{3}}}\)

\(=\dfrac{\sqrt{6+3\sqrt{3}}}{\sqrt{6+3\sqrt{3}}-2\sqrt{2}+\sqrt{2+\sqrt{3}}}\)

\(=\dfrac{\sqrt{\left(6+3\sqrt{3}\right)\left(-\sqrt{3}+2+\sqrt{3}\right)}}{-2\sqrt{3}}\)

\(=\dfrac{\sqrt{\left(6+3\sqrt{3}\right)\cdot2}}{-2\sqrt{3}}\)

\(=\dfrac{\sqrt{12+6\sqrt{3}}}{-2\sqrt{3}}\)

\(=\dfrac{\sqrt{\left(3+\sqrt{3}\right)^2}}{-2\sqrt{3}}\)

\(=\dfrac{3+\sqrt{3}}{-2\sqrt{3}}\)

\(=-\dfrac{\left(3+\sqrt{3}\right)\sqrt{3}}{6}\)

\(=-\dfrac{3\sqrt{3}+3}{6}\)

\(=-\dfrac{3\left(\sqrt{3}+3\right)}{6}\)

\(=-\dfrac{\sqrt{3}+1}{2}\)