K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2017

giup minh voi. mai co tiet rui

gianroi

16 tháng 4 2018

Tao ko bit

21 tháng 4 2018

de lam cac ban

...........

3 tháng 5 2016

a/ Áp dụng định lí Pytago vào tam giác vuông ABC ta được:

BC^2=AB^2+AC^2=3^2+4^2=5^2

=> BC=5 cm

3 tháng 5 2016

b)c/m tam giác BAM= tam giác CDM=><ABC=<DCB mà 2 góc này là 2 góc so le trong=>AB//DC

VÌ tam giác BAM= tam giác CDM=> AB=CD

21 tháng 4 2019

A B C D E I

a, Áp dụng định lý Pytago vào tam giác vuông ABC có:

 AB2 + AC2 = BC2

9+ AC2 = 152

81 + AC2 = 225

AC2 = 225 - 81

AC= 144

AC = 12 (cm)

Xét tam giác ABC có: AB < AC < BC.
nên góc ACB <  ABC < BAC ( đối diện với góc lớn hơn là cạnh lớn hơn )

b,do A là trung điểm BD (gt)
nên AB=DB 
nên CA là đg trung tuyến.
Xét tam giác BCD có: CA vuông góc AB nên CA là đg cao
mà CA là đg trung tuyến.
nên tam giác BCD cân tại C

c,...

21 tháng 4 2019
10 sao nhé10 K NHA !

Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ

                                                                                   góc ACB+ACE=180 độ

=> góc ABD=góc  ACE

Xét tam giác ABD và tam giác ACE có 

AB=AC (tam giác ABC cân tại A)

góc ABD=góc ACE (cmt)

BD=CE(gt)

=> tam giác ABD=tam giác ACE(c-g-c)

=> AD=AE(cạnh tương ứng)

Vậy tam giác ADE cân và cân tại A

b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E

Xét tam giác AMD và tam giác AME có:

AD=AE(tam giác ADE cân tại A)

góc D=góc E(cmt)

góc AMD=góc AME=90 độ

=> tam giác AMD=tam giác AME(ch-gn)

=> góc DAM=góc EAM(góc tương ứng)

Vậy AM là tia phân giác góc DAE

 

9 tháng 4 2019

A, 

xét \(\Delta ABD\)và \(\Delta ACD\)

CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)

SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C)  (1)

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)

MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90

B,  (1) => BC=DC=1/2 BC=8

ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ

\(AB^2=AD^2+BD^2\)

=> AD^2=36

=>AD=6

9 tháng 4 2019

c, vì M là trọng tâm nên AM=2/3AD=4

d

6 tháng 12 2016

Ta có hình vẽ:

A B C M D E F

a/ Xét tam giác ABM và tam giác ACM có:

AB = AC (GT)

AM: cạnh chung

BM = MC (GT)

Vậy tam giác ABM = tam giác ACM (c.c.c)

Ta có: tam giác ABM = tam giác ACM

=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)

=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900

=> AM \(\perp\)BC (đpcm)

b/ Xét tam giác BDA và tam giác EDC có:

BD = DE (GT)

\(\widehat{BDA}\)=\(\widehat{EDC}\) (đối đỉnh)

AD = DC (GT)

Vậy tam giác BDA = tam giác EDC (c.g.c)

=> \(\widehat{BAC}\)=\(\widehat{DCE}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CE (đpcm)

c/ Đã vẽ và kí hiệu trên hình

d/ Xét tam giác AMB và tam giác CMF có:

AM = MF (GT)

\(\widehat{AMB}\)=\(\widehat{CMF}\) (đối đỉnh)

BM = MC (GT)

Vậy tam giác AMB = tam giác CMF (c.g.c)

=> \(\widehat{BAM}\)=\(\widehat{MFC}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CF

Ta có: AB // CE (1)

Ta có: AB // CF (2)

Từ (1),(2) => EC trùng CF hay E,C,F thẳng hàng