Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có góc ở đáy của tam giác cân bằng 50 độ. Do đó tổng của hai góc đáy của tam giác cân bằng 50.2=100độ. Góc ở đỉnh bằng 180-100=80 độ
b) Ta có góc đỉnh của tam giác câ là 70 độ. Do đó mỗi góc ở đáy bằng (180-70):2=55 độ
c) góc B= góc C=(180-A):2
ừ dữ liệu bài toán, ta có :
KBC= 10 độ, KCB=30 độ ==> BKC=140 độ ==> AKB + AKC=360-140 = 220 độ (1)
KBC=10 độ ==> ABK=40 độ ==> BAK+AKB=180-40=140 độ (2)
BCK=30 độ ==> ACK=20 độ ==> CAK +AKC=180-20=160 độ (3)
Tam giác ABC cân => góc BAC= 80 ( hay BAK + CAK=80 độ ) (4)
Từ (1) => AKB = 220 - AKC thế vào (2) ==> BAK-AKC= -80 (*)
Từ (4) ==>CAK=80-BAK thế vào (3) ==> -BAK+ AKC= 80 (**)
Giải hệ (*) (**) ==> BAK = 70 độ , AKC =150 độ
Suy nốt góc còn lại AKB = 70 độ ( do AKB= 140-BAK = 70 độ)
Suy ra tam giác ABK cân tại B ( 2 góc ở đáy bằng nhau)
Vẽ ΔMBC đều sao cho M nằm cùng phía với A so với BC
=>góc MBC=60 độ
=>góc MBA=10 độ
Xét ΔMAB và ΔMAC có
MA chung
AB=AC
MB=MC
Do đó: ΔMAB=ΔMAC
=>góc BMA=góc CMA=30 độ
Xét ΔBMA và ΔBCK có
góc MBA=góc KBC
MB=MC
góc BMA=góc KCB
Do đó: ΔBMA=ΔBCK
=>BA=BK
=>ΔBAK cân tại B
góc BAK=góc BKA=(180-40)/2=70 độ
Vẽ ΔMBC đều sao cho M nằm cùng phía với A so với BC
=>góc MBC=60 độ
=>góc MBA=10 độ
Xét ΔMAB và ΔMAC có
MA chung
AB=AC
MB=MC
Do đó: ΔMAB=ΔMAC
=>góc BMA=góc CMA=30 độ
Xét ΔBMA và ΔBCK có
góc MBA=góc KBC
MB=MC
góc BMA=góc KCB
Do đó: ΔBMA=ΔBCK
=>BA=BK
=>ΔBAK cân tại B
góc BAK=góc BKA=(180-40)/2=70 độ
1)
Ta có tam giác ABC cân tại A => góc B = góc C = (180 - 50) : 2 = 65 độ
2)
Ta có: tam giác ABC cân tại A => góc B = góc C = (180 - góc A) : 2
mà góc B = A + 300
=> (1800 - góc A) : 2 = Â + 300
=> \(\frac{180}{2}-\frac{Â}{2}=Â+30^0\)
=> 900 - Â/2 = Â + 300
=> 900- 300 = Â + Â/2
=> \(60^0=\frac{3Â}{2}\Rightarrow3Â=60\cdot2=120\RightarrowÂ=\frac{120}{3}=40^0\)
=> góc B = góc C = (180 - Â) : 2 = (180 - 40) : 2 = 70 độ