Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :( 1 ) \(A=5+5^2+5^3+...+5^{2019}\Rightarrow5A=5^2+5^3+5^4+...+5^{2020}\)
\(\Rightarrow5A-A=\left(5^2+5^3+5^4+...+5^{2020}\right)-\left(5+5^2+5^3+...+5^{2019}\right)\)
\(\Rightarrow4A=5^{2020}-5\Leftrightarrow4A+5=5^{2020}-5+5=5^{2020}\Rightarrow\) là số chính phương
( 2 ) Gọi ƯCLN của \(3n+2\) và \(5n+3\) là \(d\left(d>0\right)\)
Có \(3n+2⋮d\Leftrightarrow5\left(3n+2\right)⋮d\Leftrightarrow5.3n+2.5=15n+10⋮d\left(1\right)\)
Có \(5n+3⋮d\Leftrightarrow3\left(5n+3\right)⋮d\Leftrightarrow3.5n+3.3=15n+9⋮d\left(2\right)\). Từ \(\left(1\right)\left(2\right)\)
\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\Rightarrowđpcm\)
Bài 2 : ( 1 ) Có \(P=\frac{2019}{x-2020}\) vì tử số dương \(\Rightarrow GTLN\) của \(P=\frac{2019}{x-2020}>0\)
Mà \(2020\) dương \(\Rightarrow x\) dương để \(TMĐK\) \(x-2020>0\)
Để \(P\) có \(GTLN\) lớn nhất thì \(x-2020\) nhỏ nhất \(\Leftrightarrow x-2020=1\Rightarrow x=2021\)
( 2 ) Có \(\frac{a}{b}=\frac{3}{4}\Leftrightarrow\frac{a}{3}=\frac{b}{4}\) ; \(\frac{b}{c}=\frac{4}{3}\Leftrightarrow\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{3}\)
\(\Rightarrow a=36\div\left(3+4+3\right)\times3=36\div10\times3=10,8\)
\(\Rightarrow b=36\div\left(3+4+3\right)\times4=36\div10\times4=14,4\)
\(\Rightarrow c=36\div\left(3+4+3\right)\times3=36\div10\times3=10,8\)
Câu 3 :
Ta có : 14 = 2 . 7 => 2 . 7 chia hết cho 2
=> 2x + 3y chia hết cho 2
=> 2x chia hết cho 2
=> 3y chia hết cho 2
Vì ƯC(2;3) = 1
=> 3y chia hết cho 2 => y chia hết cho 2
=> 3y ≤ 14
=> y ≤ 14/3
=> y ≤ 4
=> y = 2 ; y = 4
Với y = 2 => 2x + 3 - 2 = 14=> x = 4
y = 4 => 2x + 3 . 4 = 14 => x = 1
Vậy với x = 2 thì y = 4
x = 4 thì y = 2
Câu 3 :
Ta có : 14 = 2 . 7 => 2 . 7 chia hết cho 2
=> 2x + 3y chia hết cho 2
=> 2x chia hết cho 2
=> 3y chia hết cho 2
Vì ƯC(2;3) = 1
=> 3y chia hết cho 2 => y chia hết cho 2
=> 3y ≤ 14
=> y ≤ 14/3
=> y ≤ 4
=> y = 2 ; y = 4
Với y = 2 => 2x + 3 - 2 = 14=> x = 4
y = 4 => 2x + 3 . 4 = 14 => x = 1
Vậy với x = 2 thì y = 4
x = 4 thì y = 2
Bài 1 :
\(a)\) \(A=78.31+78.24+17.78+22.72\)
\(A=78\left(31+24+17\right)+22.72\)
\(A=78.72+22.72\)
\(A=72\left(78+22\right)\)
\(A=72.100\)
\(A=7200\)
\(b)\) \(B=3^4.109-3^6+\left(1+2+3+...+2018\right)\left(199199.198-198198-199\right)\)
\(B=3^4\left(109-3^2\right)+\left(1+2+3+...2018\right)\left(199.1000.198-198.1000.199\right)\)
\(B=81.100+\left(1+2+3+...+2018\right).0\)
\(B=8100\)
\(c)\) \(C=1.2+2.3+3.4+...+99.100\)
\(3C=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(3C=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)
\(3C=\left(1.2.3+2.3.4+3.4.5+...+99.100.101\right)-\left(0.1.2+1.2.3.+2.3.4+...+98.99.100\right)\)
\(3C=99.100.101-0.1.2\)
\(3C=999900\)
\(C=\frac{999900}{3}\)
\(C=333300\)
Chúc bạn học tốt ~
a)
(x-2)(y+1)=7
=> x-2 ; y+1 thuộc Ư(7)={-1,-7,1,7}
Ta có bảng:
x-2 | -1 | -7 | 1 | 7 |
y+1 | -7 | -1 | 7 | 1 |
x | 1 | -5 | 3 | 9 |
y | -8 | -2 | 6 | 0 |
Vậy ta chỉ có 2 cặp x,y thõa mãn điều kiện x>y; là (1,-8) và (9,0)
b)
3x+8 chia hết cho x-1
<=> 3x-3+11 chia hết cho x-1
<=> 3(x-1)+11 chia hết cho x-1
<=> 3(x-1) chia hết x-1; 11 chia hết cho x-1
=> x-1 \(\in\)Ư(11)={-1,-11,1,11}
<=>x\(\in\){0,-10,2,12}