Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ảnh ko theo trật tự và bị thiếu nên mk sẽ gửi lại 1 tấm nx và mong bn thông cảm cho
a: (2x-3)(3x+6)>0
=>(2x-3)(x+2)>0
=>x<-2 hoặc x>3/2
b: (3x+4)(2x-6)<0
=>(3x+4)(x-3)<0
=>-4/3<x<3
c: (3x+5)(2x+4)>4
\(\Leftrightarrow6x^2+12x+10x+20-4>0\)
\(\Leftrightarrow6x^2+22x+16>0\)
=>\(6x^2+6x+16x+16>0\)
=>(x+1)(3x+8)>0
=>x>-1 hoặc x<-8/3
f: (4x-8)(2x+5)<0
=>(x-2)(2x+5)<0
=>-5/2<x<2
h: (3x-7)(x+1)<=0
=>x+1>=0 và 3x-7<=0
=>-1<=x<=7/3
a) A=x(x-2)
Để A>0
TH1: x>0 và x-2 < 0 ==> 0<x<2
TH2: x< 0 và x-2 >0 ===> Không có giá trị nào của x thỏa mãn;
Vậy : Để A< 0 thì 0<x<2
Để A lớn hơn hoặc bằng 0 thì :
TH1: x >=0 và x-2>=0 ===> x>=2
TH2 : x<=0 và x-2<=2 ===> x<=2
như vậy, để A lớn hơn hoặc bằng 0 thì x>=2 hoặc x<=2
Bài 1
A = \(x\)(\(x-2\))
\(x=0\); \(x-2\) = 0 ⇒ \(x=2\)
Lập bảng ta có:
\(x\) | - 0 + 2 + |
\(x-2\) | - - 0 + |
A =\(x\left(x-2\right)\) | + 0 - 0 + |
Để A ≥ 0 thì \(x\) ≥ 0 hoặc \(x\ge\) 2
Để A < 0 thì 0 < \(x\) < 2
Bài 1
b; \(\dfrac{-x+2}{3-x}\)
- \(x\) + 2 = 0 ⇒ \(x=2\)
3 - \(x=0\) ⇒ \(x=3\)
Lập bảng:
\(x\) | 2 3 |
-\(x+2\) | + 0 - - |
3 - \(x\) | + + 0 - |
A = \(\dfrac{-x+2}{3-x}\) | + - + |
B > 0 ⇔ \(x< 2\) hoặc \(x>3\)
B < 0 ⇔ 2 < \(x\) < 3
a, (5x+7)(2x-1) <0
<=> \(\hept{\begin{cases}5x+7< 0\\2x-1>0\end{cases}}\)<=> \(\hept{\begin{cases}5x< 7\\2x< 1\end{cases}}\)
<=> \(\hept{\begin{cases}5x+7>0\\2x-1< 0\end{cases}}\)<=> ..................
(5x+7)(2x-1) =0
<=> \(\orbr{\begin{cases}5x+7=0\\2x-1=0\end{cases}}\)<=> ..................