Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) AD và AF cách đều tâm O nên chúng bằng nhau.
b) Kẻ OI MN, OK PQ.
Trong đường tròn nhỏ, ta có: MN > PQ OI < OK.
(Dây lớn hơn thì gần tâm hơn)
Trong đường tròn lớn, OI < OK AE > AH.
(Dây gần tâm hơn thì lớn hơn)
c) A, B, O, C cách đều trung điểm AO.
d)
a:Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay OA⊥BC
a: góc ADB=1/2*180=90 độ
=>AD vuông góc BC
góc AEC=góc ADC=90 độ
=>AEDC nội tiếp
b: ΔOAF cân tại O
mà OC là đường cao
nên OC là phân giác
Xét ΔOAC và ΔOFC có
OA=OF
góc AOC=góc FOC
OC chung
=>ΔOAC=ΔOFC
=>góc OFC=90 độ
=>CF là tiếp tuyến của (O)
a) sử dụng tính chất tiếp tuyến là ra
b) vì MN > PQ ==> AE>AH
c) vì AB và AC là 2 tiếp tuyến ==> góc ABO=góc ACO=90 độ
xét tứ giác ABOC có 2 góc đối ABO+ACO=180 độ
=> tứ giác ABOC là tứ giác nội tiếp
do đó A;B;O;C cùng thuộc 1 đường tròn đường kính OA
d) vì OA=OE ==> tam giác OAE cân tạo O ==> góc \(OAE=\frac{180-AOE}{2}\) (1)
TƯƠNG TỰ tam giác AOH cân tại O ==> GÓC \(AOH=\frac{180-AOH}{2}\)(2)
VÌ AE>AH ==> góc AOE> góc AOH (3)
TỪ (1) ;(2) VÀ (3) ==> góc OAE <OAH
phải là cát tuyến AMN và APQ chứ sao là tiếp tuyến được