Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Gọi số cây bút xanh và số cây bút đỏ lần lượt là a,b
Theo đề, ta có:
a+b=5 và 15000a+20000b=85000
=>a+b=5 và 3a+4b=17
=>a=3 và b=2
1:
=>3/x-5=2x/x-5
=>2x=3
=>x=3/2(nhận)
Câu 1:
Thay \(x=-12\) vào \(\left|x-2\right|\)
\(\Rightarrow\left|-12-2\right|=\left|-14\right|=14\)
Câu 2: Chọn phương án A.
Câu 3:
\(\left|-120\right|+\left|20\right|=120+20=140\)
a: Thay x=5 vào B, ta được:
\(B=\dfrac{5-1}{5-3}=\dfrac{4}{2}=2\)
b: \(A=\dfrac{2x^2+6x-2x^2-3x-1}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x-1}{\left(x+3\right)\left(x-3\right)}\)
a,ĐK: \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)
b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)
\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)
\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)
c, Với x = 4 thỏa mãn ĐKXĐ thì
\(A=\frac{-3}{4-3}=-3\)
d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)
\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)
Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)
a: \(A=\dfrac{1}{\left(3-1\right)\left(3+1\right)}+\dfrac{1}{\left(5-1\right)\left(5+1\right)}+...+\dfrac{1}{\left(99-1\right)\left(99+1\right)}\)
\(=\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+...+\dfrac{1}{98\cdot100}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{98\cdot100}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{49}{100}=\dfrac{49}{200}\)
a: \(B=\dfrac{21+x^2-x-12-x^2+4x-3}{\left(x+3\right)\left(x-3\right)}:\dfrac{x+3-1}{x+3}\)
\(=\dfrac{3x+6}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{x+3}{x+2}\)
\(=\dfrac{3}{x-3}\)
b: |2x+1|=5
=>2x+1=5 hoặc 2x+1=-5
=>x=-3(loại) hoặc x=2(nhận)
Khi x=2 thì \(B=\dfrac{3}{2-3}=-3\)
c: Để B=-3/5 thì x-3=-5
=>x=-2(loại)
d: Để B<0 thì x-3<0
=>x<3
Lời giải:Áp dụng định lý Menelaus với tam giác $AMC$ có $B,I,D$ thẳng hàng:
$\frac{AD}{DC}.\frac{IM}{IA}.\frac{BC}{BM}=1$
$\Leftrightarrow \frac{AD}{DC}.2.3=1$
$\Leftrightarrow \frac{AD}{DC}=\frac{1}{6}$
$\Rightarrow \frac{AD}{DC}=\frac{1}{7}$
1)trước khi rút gọn bạn cần tìm điều kiện để có phân thức này như
+)Điều kiện: \(\left\{{}\begin{matrix}x-1\ne0\\x^2-1\ne\\x+1\ne0\end{matrix}\right.0}\)
\(\Rightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
rồi bạn rút gọn
2) với \(x=1\dfrac{1}{3}=\dfrac{4}{3}\) khi đó bạn thay x vào biểu thức A thì tìm đc giá trị
3) bạn tự làm đc :))
(\(\dfrac{x+1}{x-1}\)-- \(\dfrac{x^2+2x+9}{x^2-1}\)).\(\dfrac{x+1}{5}\)=(\(\dfrac{\left(x+1\right)^2}{x^2-1}\)--\(\dfrac{x^2+2x+9}{x^2-1}\)):\(\dfrac{x+1}{5}\)
=\(\dfrac{-8}{x^2-1}\):\(\dfrac{x+1}{5}\)=\(\dfrac{-8}{5\left(x-1\right)}\)
Cố gắng lên bạn nhé!
A=\(\dfrac{9}{1.2}\)+\(\dfrac{9}{2.3}\)+\(\dfrac{9}{3.4}\)+...+\(\dfrac{9}{98.99}\)+\(\dfrac{9}{99.100}\)
= 9 (\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\))
= 9 ( 1-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\))
= 9 (1- \(\dfrac{1}{100}\))= 9.\(\dfrac{99}{100}\)=\(\dfrac{891}{100}\)
Số bi của Hải là:
12:\(\dfrac{1}{2}\) = 24 (viên)
Số bi của Hà là:
24 . \(\dfrac{2}{3}\) = 16 (viên)
Số bi của An là:
16 . \(\dfrac{5}{4}\) = 20 (viên)
Tổng số bi của cả ba bạn là:
16 + 20 + 24 = 60 (viên)
Tỉ số phần trăm số bi của Hải so với cả ba bạn là:
24 : 60 . 100 = 40 %