K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Lời giải:Áp dụng định lý Menelaus với tam giác $AMC$ có $B,I,D$ thẳng hàng:

$\frac{AD}{DC}.\frac{IM}{IA}.\frac{BC}{BM}=1$

$\Leftrightarrow \frac{AD}{DC}.2.3=1$

$\Leftrightarrow \frac{AD}{DC}=\frac{1}{6}$

$\Rightarrow \frac{AD}{DC}=\frac{1}{7}$

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Hình vẽ:

undefined

5 tháng 6 2018

Ta có:

\(\frac{S_{BDM}}{S_{BDC}}=\frac{BM}{BC}=\frac{1}{3}\left(1\right)\)

Ta lại có

\(\hept{\begin{cases}\frac{S_{AIB}}{S_{BIM}}=\frac{AI}{MI}=\frac{1}{2}\\\frac{S_{ADI}}{S_{MDI}}=\frac{AI}{MI}=\frac{1}{2}\end{cases}}\)

\(\Rightarrow S_{BDM}=S_{BIM}+S_{DIM}=2S_{AIB}+2S_{ADI}=2S_{ABD}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{2S_{ABD}}{S_{BDC}}=\frac{1}{3}\)

\(\Rightarrow\frac{S_{ABD}}{S_{BDC}}=\frac{1}{6}=\frac{AD}{DC}\)

\(\Rightarrow\frac{AD}{AC}=\frac{1}{7}\)

Xét ΔABC có 

M∈AB(gt)

N∈AC(gt)

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(gt)(1)

Do đó: MN//BC(Định lí Ta lét đảo)

Suy ra: MK//BI và NK//CI

Xét ΔABI có 

M∈AB(gt)

K∈AI(gt)

MK//BI(Gt)

Do đó: \(\dfrac{AM}{AB}=\dfrac{MK}{BI}\)(Hệ quả của Định lí Ta lét)(2)

Xét ΔACI có 

K∈AI(gt)

N∈AC(gt)

KN//IC(cmt)

Do đó: \(\dfrac{AN}{AC}=\dfrac{KN}{IC}\)(Hệ quả của Định lí Ta lét)(3)

Từ (1), (2) và (3) suy ra \(\dfrac{MK}{BI}=\dfrac{NK}{CI}\)

mà BI=CI(I là trung điểm của BC)

nên MK=NK(đpcm)

1 tháng 4 2021

tự vẽ hình 

a, có AM/AB=1/3

mà AN/AC=1,5/4,5=1/3

=> AM/AB=AN/AC

=> MN//BC

b, Ta có MN//BC=> tam giác AMN đồng dạng tam giác ABC

=> <AMN= <ABC

Xét tam giác AMI và tam giác ABK

<AMI= <ABC (cmt)

<MAK chung

=> tam giác AMI đồng dạng tam giác ABK

MI/BK= AI/AK 

 

a: Xét ΔDBE và ΔDMA có

góc DBE=góc DMA

góc BDE=góc MDA
=>ΔDBE đồng dạng vơi ΔDMA

=>BE/MA=DB/DM=1/3

=>BE=1/3MA=1/3*1/2AC=1/6AC

b: BE//AC

=>BK/KC=BE/AC=1/4

=>BK/BC=1/5

 

26 tháng 3 2023

câu c nx bạn ơi, cứu mik