Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{S_{BDM}}{S_{BDC}}=\frac{BM}{BC}=\frac{1}{3}\left(1\right)\)
Ta lại có
\(\hept{\begin{cases}\frac{S_{AIB}}{S_{BIM}}=\frac{AI}{MI}=\frac{1}{2}\\\frac{S_{ADI}}{S_{MDI}}=\frac{AI}{MI}=\frac{1}{2}\end{cases}}\)
\(\Rightarrow S_{BDM}=S_{BIM}+S_{DIM}=2S_{AIB}+2S_{ADI}=2S_{ABD}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{2S_{ABD}}{S_{BDC}}=\frac{1}{3}\)
\(\Rightarrow\frac{S_{ABD}}{S_{BDC}}=\frac{1}{6}=\frac{AD}{DC}\)
\(\Rightarrow\frac{AD}{AC}=\frac{1}{7}\)
Xét ΔABC có
M∈AB(gt)
N∈AC(gt)
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)(gt)(1)
Do đó: MN//BC(Định lí Ta lét đảo)
Suy ra: MK//BI và NK//CI
Xét ΔABI có
M∈AB(gt)
K∈AI(gt)
MK//BI(Gt)
Do đó: \(\dfrac{AM}{AB}=\dfrac{MK}{BI}\)(Hệ quả của Định lí Ta lét)(2)
Xét ΔACI có
K∈AI(gt)
N∈AC(gt)
KN//IC(cmt)
Do đó: \(\dfrac{AN}{AC}=\dfrac{KN}{IC}\)(Hệ quả của Định lí Ta lét)(3)
Từ (1), (2) và (3) suy ra \(\dfrac{MK}{BI}=\dfrac{NK}{CI}\)
mà BI=CI(I là trung điểm của BC)
nên MK=NK(đpcm)
a: Xét ΔDBE và ΔDMA có
góc DBE=góc DMA
góc BDE=góc MDA
=>ΔDBE đồng dạng vơi ΔDMA
=>BE/MA=DB/DM=1/3
=>BE=1/3MA=1/3*1/2AC=1/6AC
b: BE//AC
=>BK/KC=BE/AC=1/4
=>BK/BC=1/5
Lời giải:Áp dụng định lý Menelaus với tam giác $AMC$ có $B,I,D$ thẳng hàng:
$\frac{AD}{DC}.\frac{IM}{IA}.\frac{BC}{BM}=1$
$\Leftrightarrow \frac{AD}{DC}.2.3=1$
$\Leftrightarrow \frac{AD}{DC}=\frac{1}{6}$
$\Rightarrow \frac{AD}{DC}=\frac{1}{7}$
Hình vẽ: