Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. 32 = 25 => n thuộc tập 1; 2; 3; 4
b. \(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\frac{1}{16}\)
\(\Rightarrow\frac{1}{x}-\frac{2}{3}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{x}=\frac{1}{4}+\frac{2}{3}=\frac{11}{12}\)
\(\Rightarrow x=\frac{12}{11}\)
c. p nguyên tố => \(p\ge2\) => 52p luôn có dạng A25
=> 52p+2015 chẵn
=> 20142p + q3 chẵn
Mà 20142p chẵn => q3 chẵn => q chẵn => q = 2
=> 52p + 2015 = 20142p+8
=> 52p+2007 = 20142p
2014 có mũ dạng 2p => 20142p có dạng B6
=> 52p = B6 - 2007 = ...9 (vl)
(hihi câu này hơi sợ sai)
d. \(17A=\frac{17^{19}+17}{17^{19}+1}=1+\frac{16}{17^{19}+1}\), \(17B=\frac{17^{18}+17}{17^{18}+1}=1+\frac{16}{17^{18}+1}\)
\(17^{19}+1>17^{18}+1\Rightarrow\frac{16}{17^{19}+1}< \frac{16}{17^{18}+1}\)
\(\Rightarrow17A< 17B\)
\(\Rightarrow A< B\)
\(a,\frac{x+22}{x+1}\inℤ\Leftrightarrow x+22⋮x+1\)
\(\Rightarrow x+1+21⋮x+1\)
\(x+1⋮x+1\)
\(\Rightarrow21⋮x+1\)
\(\Rightarrow x+1\inƯ\left(21\right)\)
\(\Rightarrow x+1\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)
\(\Rightarrow x\in\left\{-2;0;-4;2;-8;6;-22;20\right\}\)
vậy___
\(b,\frac{3x+1}{2x+1}\inℤ\Leftrightarrow3x+1⋮2x+1\)
\(\Rightarrow2\left(3x+1\right)⋮2x+1\)
\(\Rightarrow6x+2⋮2x+1\)
\(\Rightarrow6x+2+1-1⋮2x+1\)
\(\Rightarrow6x+3-1⋮2x+1\)
\(\Rightarrow3\left(2x+1\right)-1⋮2x+1\)
\(3\left(2x+1\right)⋮2x+1\)
\(\Rightarrow1⋮2x+1\)
\(\Rightarrow2x+1\inƯ\left(1\right)\)
đến đây lm như phần a
\(c,\frac{2x+1}{6-n}\inℤ\Leftrightarrow2x+1⋮6-n\)
\(\Rightarrow2x+1+11-11⋮6-n\)
\(\Rightarrow2x+12-11⋮6-n\)
\(\Rightarrow2\left(x+6\right)-11⋮6-n\)
\(2\left(x+6\right)⋮6-n\)
\(\Rightarrow11⋮6-n\)
tự lm tp
phần c thì k chắc lắm
\(A=\frac{4n+1}{2n+3}=\frac{4n+6}{2n+3}-\frac{5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}=2-\frac{5}{2n+3}\)
a) A nguyên khi \(\frac{5}{2n+3}\) nguyên <=> 5 chia hết cho 2n+3
<=>\(2n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
<=>\(2n\in\left\{-8;-4;-2;2\right\}\)
<=>\(n\in\left\{-4;-2;-1;1\right\}\)
b) A lớn nhất khi \(2-\frac{5}{2n+3}\)lớn nhất <=>\(\frac{5}{2n+3}\) nhỏ nhất <=> 2n+3 lớn nhất < 0 mà n nguyên
<=> 2n+3=-1 <=> n=-2
\(maxA=2-\frac{5}{2n+3}=2-\frac{5}{2\left(-2\right)+3}=2-\frac{5}{-1}=2-\left(-5\right)=7\) tại n=-2
phần giá trị nhỏ nhất bạn làm nốt
a) \(A=\frac{4}{n-3}\)
Để A nguyên => \(\frac{4}{n-3}\)nguyên
=> \(4⋮n-3\)
=> \(n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
Vậy n thuộc các giá trị trên
b) \(B=\frac{2n-1}{n+5}=\frac{2\left(n+5\right)-11}{n+5}=2-\frac{11}{n+5}\)
Để B nguyên => \(\frac{11}{n+5}\)nguyên
=> \(11⋮n+5\)
=> \(n+5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
n+5 | 1 | -1 | 11 | -11 |
n | -4 | -6 | 6 | -16 |
Vậy n thuộc các giá trị trên
a) Để A nguyên => 5 chia hết cho n - 2
n - 2 thuộc U(5) = {-5 ; -1 ; 1 ; 5}
n - 2 = -5 => n = -3
n - 2 = -1 => n = 1
n - 2 = 1 => n = 3
n - 2 = 5 => n = 7
Vậy n thuộc {-3 ; 1 ; 3 ; 7}
b) \(\frac{y}{3}-\frac{1}{x}=\frac{1}{3}\Leftrightarrow\frac{y}{3}-\frac{1}{3}=\frac{1}{x}\)
\(\frac{y-1}{3}=\frac{1}{x}\) <=> (y-1).x = 3
(y-1).x = 1.3 = (-1).(-3)
TH1: y - 1 = 1 => y = 2
=> x = 3
TH2: y - 1 = 3 => y = 4
=> x = 1
TH3: y - 1 = -1 => y = 0
=> x = -3
TH4: y - 1 = -3 => y = -2
=> x = -1
Vậy (x ; y) là (2 ; 3) ; (4 ; 1) ; (0 ; -3) ; (-2 ; -1)
a) Để A là 1 số nguyên thì n-2 \(\in\) Ư(5)={-1;-5;1;5}
Nếu n-2=-1 thì n=1
Nếu n-2=-5 thì n=-3
Nếu n-2=1 thì n=3
Nếu n-2=5 thì n=7
=>n \(\in\) {-3;1;3;7}
b) câu b này mik ko biết làm
1.a.ta có:\(\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
mà \(\frac{2017}{2018}>\frac{2017}{2018+2019};\frac{2018}{2019}>\frac{2018}{2018+2019}\)
\(\Rightarrow M>N\)
b.ta thấy:
\(\frac{n+1}{n+2}>\frac{n+1}{n+3}>\frac{n}{n+3}\Rightarrow\frac{n+1}{n+2}>\frac{n}{n+3}\)
=> A>B