Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(3^n\cdot3^4\cdot\dfrac{1}{9}=3^7\)
\(\Leftrightarrow3^n\cdot3^2=3^7\)
=>n+2=7
hay n=5
b: \(\Leftrightarrow2^n\cdot\left(\dfrac{1}{2}+4\right)=9\cdot2^5\)
\(\Leftrightarrow2^n=9\cdot2^5:\dfrac{9}{2}=9\cdot\dfrac{2}{9}\cdot2^5=2^6\)
hay n=6
MK viết lại ,bn xem đề thế này có đg ko nhé
\(a,\dfrac{1}{9}.3^4.3^{n+1}=9^4\)
\(b,\dfrac{1}{2}.2^{n+4}.2^n=9.2^5\)
Tìm a,b biết:
a) a/b=1/-3 và a-2b=14
b) 2/9.3^a+1-4.3^a=-90
Giúp mik với pleaseee!!!! Cảm ơn nhìu ak <3
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{1}=\dfrac{b}{-3}=\dfrac{a-2b}{1-2\cdot\left(-3\right)}=\dfrac{14}{7}=2\)
Do đó: a=2; b=-6
a/
\(9.3^2.\frac{1}{81}.27=\frac{9.3^2.27}{81}=\frac{3^2.3^2.3^3}{3^4}=\frac{3^7}{3^4}=3^3\)
b/
\(4.32:\left(2^3.\frac{1}{16}\right)=4.32:\left(\frac{2^3}{16}\right)=4.32:\left(\frac{2^3}{2^4}\right)=4.32:\frac{1}{2}=4.32.2=4.64=4.4^3=4^4\)
c/
\(3^4.3^5:\frac{1}{27}=3^4.3^5.27=3^4.3^5.3^3=3^{12}\)
d/(ý bạn là (-2)^2 hay -2^2 , mình làm theo cách (-2)^2 nhé!)
\(2^2.4.\frac{32}{\left(-2\right)^2}.2^5=2^2.2^2.\frac{2^5}{2^2}.2^5=2^2.2^2.2^3.2^5=2^{12}\)
2^n/32 = 4 => 2^n = 4 . 32 = 128 => n =7
27^n . 9^n = 9^27 . 81
=> (27.9)^n = 9^27 . 9^2
=> 243^n = 9^54
=> 243^n = 243^1458
vay n=1458
1/9 . 3^4 . 3^n+1 = 9^4
=> 9 . 3^n+1 = 6561
=> 3^n+1 = 6561 /9
=> 3^n+1 = 729
=> n = 5
\(\dfrac{2^7.9^4}{4^4.3^9}\)
\(=\dfrac{2^7.\left(3^2\right)^4}{\left(2^2\right)^4.3^9}\)
\(=\dfrac{2^7.3^8}{2^8.3^9}\)
\(=\dfrac{1}{2.3}=\dfrac{1}{6}\)
\(#WendyDang\)
Mk làm lun, ko viết lại đề bài nữa nhé =))
a) \(\Leftrightarrow\)\(3^2.3^{n+1}=9^4\)
\(\Leftrightarrow3^{n+1}=9^4:3^2\)
\(\Leftrightarrow3^{n+1}=3^6\)
\(\Rightarrow n+1=6\)
\(\Leftrightarrow n=6-1\)
\(\Rightarrow n=5\)
b)\(\Leftrightarrow2^n.\left(\frac{1}{2}+4\right)=9.2^5\)
\(\Leftrightarrow2^n.\frac{9}{2}=9.2^5\)
\(\Rightarrow2^n=\left(9.2^5\right):\frac{9}{2}\)
\(\Rightarrow2^n=468:\frac{9}{2}\)
Tự tính nốt KQ giúp mk nha ♥
\(\dfrac{1}{9}.3^4.3^n=9^4\)
\(\dfrac{1}{9}.3^{4+n}=9^4\)
\(3^{4+n}=\dfrac{9^4}{\dfrac{1}{9}}\)
=> \(3^{4+n}=9^4.9\)
=> \(3^{4+n}=9^5\)
=> \(3^{4+n}=(3^2)^5\)
=> \(3^{4+n_{ }}=3^{10}\)
=> \(4+n=10\)
\(n=10-4\)
\(n=6\)