Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{3^3\cdot2^3+3^3\cdot2^2+3^3\cdot1}{-13}=\dfrac{27\left(2^3+2^2+1\right)}{-13}=-27\)
b: \(B=\dfrac{2\cdot2^{12}\cdot3^6+2^{11}\cdot3^9}{2^3\cdot2^7\cdot3^7+2^7\cdot2^3\cdot5\cdot3^8}\)
\(=\dfrac{2^{13}\cdot3^6+2^{11}\cdot3^9}{2^{10}\cdot3^7+2^{10}\cdot5\cdot3^8}\)
\(=\dfrac{2^{11}\cdot3^6\left(2^2+3^3\right)}{2^{10}\cdot3^7\left(1+5\cdot3\right)}=\dfrac{2}{3}\cdot\dfrac{4+27}{1+15}=\dfrac{2}{3}\cdot\dfrac{31}{16}=\dfrac{31}{24}\)
c: \(C=\dfrac{5\cdot2^{30}\cdot3^{18}-2^{29}\cdot3^{20}}{5\cdot2^{35}\cdot3^{19}-7\cdot2^{29}\cdot3^{18}}\)
\(=\dfrac{2^{29}\cdot3^{18}\left(5\cdot2-3^2\right)}{2^{29}\cdot3^{18}\left(5\cdot2^6-7\right)}=\dfrac{10-9}{5\cdot64-7}=\dfrac{1}{313}\)
\(a,=\dfrac{3}{2}-\dfrac{5}{6}:\dfrac{1}{4}+\sqrt{\dfrac{1}{4}-\dfrac{1}{2}}=\dfrac{3}{2}-\dfrac{10}{3}+\sqrt{\dfrac{1}{2}}=-\dfrac{11}{6}+\dfrac{\sqrt{2}}{2}=\dfrac{-33+3\sqrt{2}}{6}\)
\(b,=-\dfrac{4}{3}\cdot\dfrac{9}{2}+\dfrac{13}{12}\cdot\left(-\dfrac{8}{13}\right)=6-\dfrac{2}{3}=\dfrac{16}{3}\\ c,=\dfrac{1}{4}-\left(-\dfrac{1}{6}:4-8\cdot\dfrac{1}{16}\right)=\dfrac{1}{4}-\left(-\dfrac{1}{24}-\dfrac{1}{2}\right)\\ =\dfrac{1}{4}-\dfrac{13}{24}=-\dfrac{7}{24}\\ d,=\dfrac{3^{11}\cdot5^{11}\cdot5^7\cdot3^4}{5^{18}\cdot3^{18}}=\dfrac{1}{3^3}=\dfrac{1}{27}\)
\(\dfrac{4}{3.5}+\dfrac{4}{5.7}+\dfrac{4}{7.9}+...+\dfrac{4}{97.95}\)
\(=2\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{95.97}\right)\)
\(=2\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{95}-\dfrac{1}{97}\right)\)
\(=2\left(\dfrac{1}{3}-\dfrac{1}{97}\right)\)
\(=2.\dfrac{94}{291}=\dfrac{188}{291}\)
\(=2\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{95\cdot97}\right)\\ =2\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{95}-\dfrac{1}{97}\right)\\ =2\left(\dfrac{1}{3}-\dfrac{1}{97}\right)=2\cdot\dfrac{94}{291}=\dfrac{188}{291}\)
a) \(\dfrac{1}{2}.\dfrac{1}{-3}+\dfrac{1}{-3}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{-5}+\dfrac{1}{-5}.\dfrac{1}{6}\)
\(=\dfrac{1}{-3}\left(\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{1}{-5}\left(\dfrac{1}{4}+\dfrac{1}{6}\right)\)
\(=\dfrac{1}{-3}.\dfrac{3}{4}+\dfrac{1}{-5}.\dfrac{5}{12}\)
\(=\left(-\dfrac{1}{4}\right)+\left(-\dfrac{1}{12}\right)\)
\(=-\dfrac{1}{3}\)
b) \(A=\dfrac{81^4.3^{10}.27^5.3^{12}}{3^{18}.9^3.243^2}\)
\(=\dfrac{9^8.9^8.9^{13}.9^{10}}{9^{16}.9^3.9^3}\)
\(=\dfrac{9^{39}}{9^{22}}\)
\(=9^{17}\)
\(A=\dfrac{81^4\cdot3^{10}\cdot27^5\cdot3^{12}}{3^{18}\cdot9^3\cdot243^2}=\dfrac{3^{16}\cdot3^{10}\cdot3^{15}\cdot3^{12}}{3^{18}\cdot3^6\cdot3^{10}}=\dfrac{3^{53}}{3^{34}}=3^{19}\)
Vậy A = 319
Ngân Hà làm đúng phần a) nhưng làm sai phần b) nên mk chỉ làm phần b) thôi
Các bạn ơi, giúp mình giải bài này với. Mình đang cần gấp!!!!!
a: \(=\left(1+\dfrac{4}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+\dfrac{1}{2}\)
\(=1+1+\dfrac{1}{2}=2+\dfrac{1}{2}=\dfrac{5}{2}\)
b: \(=\left(\dfrac{1}{25}+\dfrac{5}{25}+\dfrac{25}{25}\right):\left(\dfrac{1}{25}-\dfrac{5}{25}-\dfrac{25}{25}\right)\)
\(=\dfrac{31}{25}:\dfrac{-29}{25}=\dfrac{-31}{29}\)
c: \(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{\dfrac{3}{5}-\dfrac{3}{25}-\dfrac{3}{125}-\dfrac{3}{625}}{\dfrac{4}{5}-\dfrac{4}{25}-\dfrac{4}{125}-\dfrac{4}{625}}\)
=1/4+3/4
=1
a, \(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{5^4.2^8.5^4}{5^{10}.2^{10}}=\dfrac{1}{5^2.2^2}=\dfrac{1}{25.4}=\dfrac{1}{100}\)
b, \(\dfrac{2^7.9^3}{6^5.8^2}=\dfrac{2^7.3^6}{2^5.3^5.2^6}=\dfrac{3}{2^4}=\dfrac{3}{16}\)
c, \(\dfrac{45^{10}.5^{20}}{75^5}=\dfrac{5^{10}.3^{20}.5^{20}}{3^5.5^{10}}=5^{20}.3^{15}\)
d, \(\left(0,8\right)^5=\left(0,1\right)^5.8^5=\dfrac{1}{100000}.32768=0,32768\)
e, \(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{2^{15}.3^8}{2^6.3^6.2^9}=3^2=9\)
d, \(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}.\left(2^{20}+1\right)}{2^{30}.\left(2^{20}+1\right)}=2^{10}=1024\)
Chúc bạn học tốt!!!
\(\text{a) }\dfrac{5^4\cdot20^4}{25^5\cdot4^5}=\dfrac{5^4\cdot\left(5\cdot4\right)^4}{\left(5^2\right)^5\cdot4^5}=\dfrac{5^4\cdot5^4\cdot4^4}{5^{10}\cdot4^5}=\dfrac{5^8\cdot4^4}{5^{10}\cdot4^5}=\dfrac{1}{5^2\cdot4}=\dfrac{1}{25\cdot4}=\dfrac{1}{100}\)
\(\text{b) }\dfrac{2^7\cdot9^3}{6^5\cdot8^2}=\dfrac{2^7\cdot\left(3^2\right)^3}{\left(2\cdot3\right)^5\cdot\left(2^3\right)^2}=\dfrac{2^7\cdot3^6}{2^5\cdot3^5\cdot2^6}=\dfrac{2^7\cdot3^6}{2^5\cdot2^6\cdot3^5}=\dfrac{2^7\cdot3^6}{2^{11}\cdot3^5}=\dfrac{3}{2^4}=\dfrac{3}{16}\)
\(\text{c) }\dfrac{45^{10}\cdot5^{20}}{75^5}=\dfrac{\left(5\cdot9\right)^{10}\cdot5^{20}}{\left(25\cdot3\right)^5}=\dfrac{5^{10}\cdot9^{10}\cdot5^{20}}{25^5\cdot3^5}=\dfrac{5^{10}\cdot5^{20}\cdot\left(3^2\right)^{10}}{\left(5^2\right)^5\cdot3^5}=\dfrac{5^{30}\cdot3^{20}}{5^{10}\cdot3^5}=5^{20}\cdot3^{15}\)
\(\text{d) }\left(0.8\right)^5=\left(\dfrac{8}{10}\right)^5=\left(\dfrac{4}{5}\right)^5=\dfrac{4^5}{5^5}=\dfrac{64}{3125}\)
\(\text{e) }\dfrac{2^{15}\cdot9^4}{6^6\cdot8^3}=\dfrac{2^{15}\cdot\left(3^2\right)^4}{\left(2\cdot3\right)^6\cdot\left(2^3\right)^3}=\dfrac{2^{15}\cdot3^8}{2^6\cdot3^6\cdot2^9}=\dfrac{2^{15}\cdot3^8}{2^6\cdot2^9\cdot3^6}=\dfrac{2^{15}\cdot3^8}{2^{15}\cdot3^6}=3^2=9\)
\(f\text{) }\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)
Đặt A=\(\frac{4}{5.7}\)+\(\frac{4}{7.9}\)+...+\(\frac{4}{59.61}\)
A=2( \(\frac{2}{5.7}\)+\(\frac{2}{7.9}\)+...+\(\frac{2}{59.61}\))
A=2( \(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\)\(\frac{1}{59}-\frac{1}{61}\))
=2( \(\frac{1}{5}-\frac{1}{61}\))=2.\(\frac{56}{305}\)=\(\frac{112}{305}\)
\(A=\dfrac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{\left(2^2\right)^6.3+\left(2^3\right)^4.3^5}-\dfrac{5^{10}+7^3-\left(5^2\right)^5.\left(7^2\right)^2}{(5^3).7^3+5^9.\left(7^2\right)^3}\)
\(A=\dfrac{2^4.1-2.3^3}{1.1+1.1}-\dfrac{5+1-5.1}{1.1+1.7}\)
\(A=\dfrac{2^4-54}{2}-\dfrac{1.1}{2\cdot7}\)
\(A=(2^3-54)-\dfrac{1}{14}\)
\(A=\left(-46\right)-\dfrac{1}{14}\)
\(\dfrac{2^7.9^4}{4^4.3^9}\)
\(=\dfrac{2^7.\left(3^2\right)^4}{\left(2^2\right)^4.3^9}\)
\(=\dfrac{2^7.3^8}{2^8.3^9}\)
\(=\dfrac{1}{2.3}=\dfrac{1}{6}\)
\(#WendyDang\)