Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(PT\Leftrightarrow\left(x^4-x^3\right)-\left(6x^3-6x^2\right)+\left(12x^2-12x\right)-\left(9x-9\right)=0\)
\(\Leftrightarrow x^3\left(x-1\right)-6x^2\left(x-1\right)+12x\left(x-1\right)-9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x^3-3x^2\right)-\left(3x^2-9x\right)+\left(3x-9\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)-3x\left(x-3\right)+3\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x^2-3x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\) (do \(x^2-3x+3>0\forall x\))
Vậy..
Vì \(x=19\) nên \(x-19=0\)
Ta có: A = \(x^5-20x^4+21x^3-39x^2+18x\)
= \(x^5-19x^4-x^4+19x^3+2x^3-38x^2-x^2+19x-x\)
= \(x^4\left(x-19\right)-x^3\left(x-19\right)+2x^2\left(x-19\right)-x\left(x-19\right)-x\)
= \(-x=-19\)
Bài này bạn có thể làm theo cách khác chẳng hạn bạn áp dụng đ/lí Bê-du rồi lập sơ đồ Hooc-ne để tính
Bài 1: Thực hiện phép tính.
a) \(\left(x+2y\right)\left(x-2y\right)-5-x^2=x^2-4y^2-5-x^2=-4y^2-5\)
Bài 2: Phân tích đa thức thành nhân tử.
a) \(14x^3y^3-7x^2y+21x^2y^5=7x^2y\left(2xy^2-1+3y^4\right)\)
b) \(18x\left(1-x\right)-12y+12xy=18x\left(1-x\right)-12y\left(1-x\right)=6\left(1-x\right)\left(3x-2y\right)\)
c) \(9x^2-y^2+1-6x=\left(9x^2-6x+1\right)-y^2=\left(3x-1\right)^2-y^2=\left(3x-1-y\right)\left(3x-1+y\right)\)
A = x^100 - 21x^99 - 21x^98 - 21x^97 -...-21x^2 - 21x +2010
A=x^100 - 22x^99 + x^99 -22x^98 + x^98 - ... - 22x +x +2010
A=x^99 (x-22) + x^98 (x-22) + x^97(x-22) + ... + x(x-22) + x +2010
A=(x-22) (x^99 + x^98 + x^97 + ... + x) + x + 2010
Thay x = 22 vào A, tao có:
A= (22-22) (22^99 + 22^98 + ... +22) + 22 + 2010
A = 0 (22^99 + 22^98 + ... +22) + 2032
A= 0 + 2032
A = 2032
x=22
=>x-1=21
thay 21=x-1 vào A ta được:
A=x100-(x-1)x99-(x-1)x98-(x-1)x97-...-(x-1)x2-(x-1)x+2010
=x100-x100+x99-x99+x98-x98+x97-...-x3+x2-x2+x+2012
=>A=x+2012
thay x=22 vào A=x+2012 ta được:
A=22+2012=2034
a) Đặt P= x4-9x3+21x2+x+a; Q= x2-x-2
Do đa thức P có bậc là 4, đa thức Q có bậc là 2 mà P chia hết cho Q nên đa thức thương có bậc là 2
Đa thức thương có dạng : x2+cx+d
=> x4-9x3+21x2+x+a=(x2-x-2)(x2+cx+d)
=> x4-9x3+21x2+x+a = x4+cx3+dx2-x3-cx2-dx-2x2-2cx-2d
=> x4-9x3+21x2+x+a = x4+(c-1)x3+(d-c-2)x2-(d-2c)x-2d
=> c-1=-9 =>c=-8 =>c=-8
d-c-2=21 d=21+2+(-8) d=15
-2d=a a=-2d a=(-2).15=-30
Vậy a=-30 để có phép chia hết x4-9x3+21x2+x+a cho x2-x-2
Câu còn lại làm tương tự thôi
=18x^2-3x+24x-4
=3x(6x-1)+4(6x-1)
=(6x-1)(3x+4)
18x2 + 21x - 4
= 18x2 +24x - 3x - 4
= 6x(3x + 4) - (3x + 4)
= (6x - 1)(3x + 4)