Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABDE có
\(\widehat{ADB}=\widehat{AEB}=90^0\)
Do đó: ABDE là tứ giác nội tiếp
b: Xét ΔDAC vuông tại D và ΔDBF vuông tại D có
\(\widehat{DAC}=\widehat{DBF}\)
Do đó:ΔDAC∼ΔDBF
Suy ra: DA/DB=DC/DF
hay \(DB\cdot DC=DA\cdot DF\)
Mình giải hơi dài không biết có đúng không. Bạn tự vẽ hình nha!
Gọi F là trung điểm của AD. I là trung điểm của AC. Ta qui về chứng minh B,F,E thẳng hàng
Trước hết ta chứng minh bài toàn phụ: Từ S ngoài (O) kẻ 2 tiếp tuyến SC,SB và cát tuyến SDA, gọi M là giao của SO với BC thì BC là phân giác của góc AMD (bạn tự chứng mình nha).
Áp dụng vào bài toán ta có: AOMD nội tiếp \(\Rightarrow\widehat{AOD}=\widehat{AMD}\Leftrightarrow\frac{1}{2}\widehat{AOD}=\frac{1}{2}\widehat{AMD}\Leftrightarrow\widehat{ACD}=\widehat{AMB}\)
mà \(\widehat{ACD}+\widehat{ABD}=180^o,\widehat{AMB}+\widehat{AMC}=180^o\Rightarrow\widehat{ABD}=\widehat{AMC}\)
Xét (O) ta có: \(\widehat{ADB}=\widehat{ACB}\)
Suy ra \(\Delta ABD\)đồng dạng với \(\Delta AMC\)(g,g) mà F là trung điểm AD, I là trung điểm AC suy ra tam giác ABF đồng dạng với tam giác AMI (c.g.c) suy ra \(\widehat{ABF}=\widehat{AMI}\)
Dễ thấy: \(\widehat{OMI}+\widehat{OIC}=90^o+90^o=180^o\)suy ra OMCI nội tiếp suy ra \(\widehat{MIC}=\widehat{MOC}=\frac{1}{2}\widehat{BOC}=\widehat{BAC}\Rightarrow\widehat{AIM}=\widehat{BDC}\)
Kết hợp với \(\widehat{BCD}=\widehat{BAD}=\widehat{MAC}\)(do tam giác ABD đồng dạng với tam giác AMC) suy ra tam giác AIM đồng dạng với tam giác CDB(g.g) suy ra \(\widehat{ABF}=\widehat{AMI}=\widehat{CBD}=\widehat{CAD}=\widehat{ACE}\left(AD//CE\right)=\widehat{ABE}\)suy ra B,F,E thẳng hàng hay BE đi qua trung điểm AD (đpcm)
Xét đường tròn (O) có: \(\Delta\)ACD nt; AD là đường kính
\(\Rightarrow\) \(\Delta\)ACD là tam giác vuông tại C (sự xác định đường tròn)
\(\Rightarrow\) \(\widehat{C}\) = 90o
Xét tứ giác OECD có: \(\widehat{EOD}+\widehat{C}=90^o+90^o=180^o\) (OE \(\perp\) AD tại O)
\(\widehat{EOD}\) và \(\widehat{C}\) là 2 góc đối nhau
\(\Rightarrow\) Tứ giác OECD nt đường tròn (định lý tứ giác nt)
b, Xét tam giác AED có: EO \(\perp\) AD tại O (gt); EO là trung tuyến ứng với AD
\(\Rightarrow\) \(\Delta\)AED là tam giác cân tại E (dhnb tam giác cân)
\(\Rightarrow\) EA = ED (đpcm)
c, Vì \(\Delta\)AED là tam giác cân tại E (cmb)
\(\Rightarrow\) \(\widehat{EAD}=\widehat{EDA}\) (t/c) (1)
Lại có: \(\Delta\)AOC cân tại O (OA = OC = R)
\(\Rightarrow\) \(\widehat{OAE}=\widehat{OCE}\) (t/c) (2)
Từ (1) và (2) \(\Rightarrow\) \(\widehat{EDA}=\widehat{OCE}\)
Xét tam giác AOC và tam giác AED có:
\(\widehat{A}\) chung
\(\widehat{OCA}=\widehat{EDA}\) (cmt)
\(\Rightarrow\) \(\Delta\)AOC ~ \(\Delta\)AED (gg)
\(\Rightarrow\) \(\dfrac{AO}{AE}=\dfrac{AC}{AD}\) (tỉ số đồng dạng)
\(\Rightarrow\) AE.AC = AO.AD
Mà trong đường tròn (O): AO = R; AD = 2R (AO là bk; AD là đk)
\(\Rightarrow\) AE.AC = R.2R = 2R2 (đpcm)
Chúc bn học tốt!
a: góc HDC+góc HEC=180 độ
=>HDCE nội tiếp
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
c: góc AFH+góc AEH=180 độ
=>AEHF nội tiếp
góc FEH=góc BAD
góc DEH=góc FCB
mà góc BAD=góc FCB
nên góc FEH=góc DEH
=>EH là phân giác của góc DEF
a) Xét tứ giác AEDB có
\(\widehat{AEB}=\widehat{ADB}\left(=90^0\right)\)
nên AEDB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Xét (O) có
\(\widehat{EAB}\) là góc nội tiếp chắn \(\stackrel\frown{BE}\)
\(\widehat{BCE}\) là góc nội tiếp chắn \(\stackrel\frown{BE}\)
Do đó: \(\widehat{EAB}=\widehat{BCE}\)(Hệ quả góc nội tiếp)
hay \(\widehat{DAB}=\widehat{DCE}\)
Xét ΔDAB vuông tại D và ΔDCE vuông tại D có
\(\widehat{DAB}=\widehat{DCE}\)(cmt)
Do đó: ΔDAB\(\sim\)ΔDCE(g-g)
Suy ra: \(\dfrac{DA}{DC}=\dfrac{DB}{DE}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow DA\cdot DE=DB\cdot DC\)(đpcm)