Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mik nghĩ chỗ \(\dfrac{2}{x.\left(x+1\right)}\) phải là \(\dfrac{1}{x.\left(x+1\right)}\) bạn có thể vui lòng kiểm tra lại đề không Lệ Quyên
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2001}{2003}\)
\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2001}{2003}\)
\(\Leftrightarrow\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+\dfrac{2}{4\cdot5}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2001}{2003}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2001}{4006}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2001}{4006}\)\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2003}\)
\(\Leftrightarrow x+1=2003\Leftrightarrow x=2002\)
=>\(\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2001}{2003}\)
=>\(\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2001}{4006}\)
=>\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2001}{4006}\)
=>\(\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2001}{4006}\)
=>1/(x+1)=1/2-2001/4006=1/2003
=>x+1=2003
=>x=2002
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)
<=>\(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{2003}\cdot\frac{1}{2}=\frac{2001}{4006}\)
<=>\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)
<=>\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)
<=>\(\frac{1}{x+1}=\frac{1}{2}-\frac{2001}{4006}\)
<=>\(\frac{1}{x+1}=\frac{1}{2003}\)
<=>x+1=2003
<=>x=2002
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)
\(2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)
\(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)
\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2001}{2003}\)
\(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2001}{2003}\)
\(\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2001}{2003}:2\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(-\frac{1}{x+1}=\frac{2001}{4006}-\frac{1}{2}\)
\(-\frac{1}{x+1}=-\frac{1}{2003}\)
\(\Rightarrow x+1=2003\)
\(\Rightarrow x=2012\)
Ta có: \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+..+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)
\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)
\(\Rightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{2003}:2\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\Rightarrow\frac{2003}{4006}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\Rightarrow\frac{1}{x+1}=\frac{2003}{4006}-\frac{2001}{4006}\)
\(\Rightarrow\frac{1}{x+1}=\frac{2}{4006}=\frac{1}{2003}\)
=> x + 1 = 2003
=> x = 2002
Vậy x = 2002
Duyệt nha !!!
chúc hk tốt!!!
Sorry mink mới lớp 5 nên ko thể giúp bn lm bài toán này thành thật xin lỗi
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}+\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Dễ thấy \(\frac{1}{10}>\frac{1}{11}>\frac{1}{12}>\frac{1}{13}>\frac{1}{14}\)nên biểu thức trong ngoặc thứ hai \(\ne\)0
Do đó \(x+1=0\)\(\Rightarrow x=0-1=-1\)
b) \(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Rightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)
\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+4}{2003}=0\)
\(\Leftrightarrow\left(x+2004\right).\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)=0\)
Vì \(\frac{1}{2000}>\frac{1}{2001}>\frac{1}{2002}>\frac{1}{2003}\)nên biểu thức trong ngoặc thứ hai phải \(\ne\)0
Do đó \(x+2004=0\)\(\Rightarrow x=0-2004=-2004\)
Câu 1:x+1/10 + x+1/11 = x+1/12 + x+1/13 + x+1/14.
<-> (x+1)(1/10+1/11-1/12-1/13-1/14)=0
<-> x+1=0
<-> x=-1
Câu 2:
x+4/2000+x+3/2001=x+2/2002+x
⇔x+4/2000+1+x+3/2001=x+2/2002+1+x+1/2003
⇔x+2004/2000+x+2004/2001=x+2004/2002+x+2004/2003
⇔(x+2004)/(1/2000+1/2001−1/2002−1/2003)=0
⇔x+2004=0
⇔x=-2004
13 +16 +110 +....+1x(x+1):2 =20012003
26 +212 +220 +....+2x(x+1) =20012003
2(12.3 +13.4 +14.5 +....+1x(x+1) )=20012003
12 −13 +13 −14 +14 −15 +....+1x −1x+1 =20012003 :2=20014006
12 −1x+1 =20014006
1x+1 =12 −20014006 =12003
=> x+1 = 2003
=> x = 2003 - 1
=> x = 2002
Xin 1 tích đúng
\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+.....+\frac{2}{x.\left(x+1\right)}=\frac{2001}{2003}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2001}{2003}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2001}{2003}\)
\(\Rightarrow\frac{x-1}{x+1}=\frac{2001}{2003}\)
\(\Rightarrow2x=4004\)
\(\Rightarrow x=2002\)
\(\frac{x+4}{2001}+\frac{x+3}{2002}=\frac{x+2}{2003}+\frac{x+1}{2004}\)
\(\Leftrightarrow\left(\frac{x+4}{2001}+1\right)+\left(\frac{x+3}{2002}+1\right)=\left(\frac{x+2}{2003}+1\right)+\left(\frac{x+1}{2004}+1\right)\)
\(\Leftrightarrow\frac{x+2005}{2001}+\frac{x+2005}{2002}=\frac{x+2005}{2003}+\frac{x+2005}{2004}\)
\(\Leftrightarrow\frac{x+2005}{2001}+\frac{x+2005}{2002}-\frac{x+2005}{2003}-\frac{x+2005}{2004}=0\)
\(\Leftrightarrow\left(x+2005\right).\left(\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}+\frac{1}{2004}\right)=0\)
Vì \(\left(\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}+\frac{1}{2004}\right)\ne0\)
\(\Rightarrow x+2004=0\)
\(\Rightarrow x=0-2004=-2004\)
Bài 1:
a) \(\left|3x-5\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5=4\\3x-5=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)
c) \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Leftrightarrow x=-2004\)( do \(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\))
Bài 2:
a) \(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)
\(=\dfrac{1}{4}+\dfrac{3}{4}=1\)
b) \(=-\left(\dfrac{1}{99.100}+\dfrac{1}{98.99}+\dfrac{1}{97.98}+...+\dfrac{1}{2.3}+\dfrac{1}{1.2}\right)\)
\(=-\left(\dfrac{1}{99}-\dfrac{1}{100}+\dfrac{1}{98}-\dfrac{1}{99}+...+1-\dfrac{1}{2}\right)\)
\(=-\left(1-\dfrac{1}{100}\right)=-\dfrac{99}{100}\)
Bài 1:
a) \(\left|3x-5\right|=4\) (1)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5=4\\3x-5=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=9\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)
b) \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\) \(\left(do\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\right)\)
\(\Leftrightarrow x=-1\)
c) \(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
\(\Leftrightarrow\left(\dfrac{x+4}{2000}+1\right)+\left(\dfrac{x+3}{2001}+1\right)=\left(\dfrac{x+2}{2002}+1\right)+\left(\dfrac{x+1}{2003}+1\right)\)
\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{2001}-\dfrac{x+2004}{2002}-\dfrac{x+2004}{2003}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)
\(\Leftrightarrow x+2004=0\) \(\left(do\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\ne0\right)\)
\(\Leftrightarrow x=-2004\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}=\frac{2001}{2003}\)
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)
\(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{2003}:2\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)
=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{2001}{4006}=\frac{1}{2003}\)
=> x + 1 = 2003
=> x = 2003 - 1
=> x = 2002
13+16+110+...+1x(x+1):2=2001200313+16+110+...+1�(�+1):2=20012003
26+212+220+...+2x(x+1)=2001200326+212+220+...+2�(�+1)=20012003
2.(12.3+13.4+14.5+...+1x(x+1))=200120032.(12.3+13.4+14.5+...+1�(�+1))=20012003
12−13+13−14+14−15+...+1x−1x+1=20012003:212−13+13−14+14−15+...+1�−1�+1=20012003:2
12−1x+1=2001400612−1�+1=20014006
=> 1x+1=12−20014006=120031�+1=12−20014006=12003
=> x + 1 = 2003
=> x = 2003 - 1
=> x = 2002