Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko ghi lại đề
\(=5^2.\left(5^3\right)^3.\left(5^4\right)^6\)
\(=5^2.5^9.5^{24}\)
\(=5^{35}\)
Trl :
32 < 2n < 128 2.16 \(\ge\)2n > 4 125 < 5n < 625
25 < 2n < 27 25 \(\ge\)2n > 22 53 < 5n < 54
5 < n < 7 5 \(\ge\)n > 2 => 3 < n < 4
=> n = 6 \(\Rightarrow n\in\left\{5;4;3;2\right\}\) => \(n\in\varnothing\)
Hok tốt
a) Ta có: \(3^{54}=\left(3^6\right)^9=729^9\)
Lại có: \(2^{81}=\left(2^9\right)^9=512^9\)
Ta có: \(729^9>512^9\Rightarrow3^{54}>2^{81}\)
b) Ta có: \(5\cdot125\cdot625=5^1\cdot5^3\cdot5^4=5^8\)
Lại có: \(625^3=\left(5^4\right)^3=5^{12}\)
Ta có: \(5^8< 5^{12}\Rightarrow5\cdot125\cdot625< 625^3\)
c) Xét: \(8^4\cdot16^3\cdot32\)
\(=\left(2^3\right)^4\cdot\left(2^4\right)^3\cdot2^5\)
\(=2^{12}\cdot2^{12}\cdot2^5\)
\(=2^{29}\)
Xét: \(64^4\cdot8^2\)
\(=\left(2^6\right)^4\cdot\left(2^3\right)^2\)
\(=2^{24}\cdot2^6\)
\(=2^{30}\)
Ta có: \(2^{29}< 2^{30}\Rightarrow8^4\cdot16^3\cdot32< 64^4\cdot8^2\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
128 : 4 + 625 : 125 - 3 x 32
= 32 + 5 - 96
= 37 - 96
= - 59.