Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a, 3/4 - 5/4 :(x-1) =1/2`
`=> 5/4:(x-1)= 3/4 -1/2`
`=> 5/4:(x-1)= 3/4 - 2/4`
`=> 5/4:(x-1)= 1/4`
`=> x-1= 5/4 : 1/4`
`=> x-1=5`
`=>x=5+1`
`=>x=6`
__
`(1/2-x)^2 -2^2 =12`
`=> (1/2-x)^2 = 12+4`
`=> (1/2-x)^2= 16`
`=> (1/2-x)^2 =4^2`
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}-x=4\\\dfrac{1}{2}-x=-4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\)
__
`(1/2)^(2x-1) =1/16`
`=> (1/2)^(2x-1) = (1/2)^4`
`=> 2x-1=4`
`=> 2x=4+1`
`=>2x=5`
`=>x=5/2`
\(a,\dfrac{3}{4}-\dfrac{5}{4}:\left(x-1\right)=\dfrac{1}{2}\)
\(\dfrac{5}{4}:\left(x-1\right)=\dfrac{3}{4}-\dfrac{1}{2}\)
\(\dfrac{5}{4}:\left(x-1\right)=\dfrac{1}{4}\)
\(x-1=\dfrac{5}{4}:\dfrac{1}{4}\)
\(x-1=5\)
\(x=6\)
\(\left(\dfrac{1}{2}-x\right)^2-2^2=12\)
\(\left(\dfrac{1}{2}-x\right)^2-4=12\)
\(\left(\dfrac{1}{2}-x\right)^2=16\)
\(\left(\dfrac{1}{2}-x\right)^2=4^2hoặc\left(\dfrac{1}{2}-x\right)^2=\left(-4\right)^2\)
\(\dfrac{1}{2}-x=4hoặc\dfrac{1}{2}-x=-4\)
=>1/2 -x =4 1/2 -x= -4
=> x=1/2-4 x=1/2-(-4)
=>x=-7/2 x=9/2
vậy x∈{-7/2 ; 9/2}
\(\left(\dfrac{1}{2}\right)^{2x-1}=\dfrac{1}{16}\)
\(=>\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^4\)
\(=>2x-1=4\)
\(=>2x=5\)
\(=>x=\dfrac{5}{2}\)
Thêm nữa câu a) Tính: M(x) + N(x)+ P(x)
B) Tính M(x) - N (x) - P(x)
ok rồi giúp mình với nha
b) Thay x=-1 vào biểu thức \(B=\dfrac{2x^2+5x+4}{x^2-4x+3}\), ta được:
\(B=\dfrac{2\cdot\left(-1\right)^2+5\cdot\left(-1\right)+4}{\left(-1\right)^2-4\cdot\left(-1\right)+3}=\dfrac{2\cdot1-5+4}{1+4+3}=\dfrac{1}{8}\)
Vậy: Khi x=-1 thì \(B=\dfrac{1}{8}\)
Ta có:
|x| = \(\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{1}{3};x=-\dfrac{1}{3}\)
a) \(2^3:\left|x-2\right|=2\)
\(\Leftrightarrow8:\left|x-2\right|=2\)
\(\Leftrightarrow\left|x-2\right|=8:2\)
\(\Leftrightarrow\left|x-2\right|=4\)
Xét trường hợp 1: \(x-2=4\)
\(\Rightarrow x=4+2\)
\(\Rightarrow x=6\)
Xét trường hợp 2: \(x-2=-4\)
\(\Rightarrow x=-4+2\)
\(\Rightarrow x=-\left(4-2\right)\)
\(\Rightarrow x=-2\)
Vậy \(x=6\) hoặc \(x=-2\)
b)
b) (5/2-3x)=25/9
3x = 5/2-25/9
3x =-5/18
x =-5/18:3
x=-5/54
\(e.\left(x-1\right)^5=-32\)
\(\left(x-1\right)^5=\left(-2\right)^5\)
\(x-1=-2\)
\(x\) \(=-2+1\)
\(x\) \(=-1\)
Vậy \(x=-1\)
a) Ta có: \(A=\left|3x+\frac{1}{3}\right|-\frac{1}{4}\ge-\frac{1}{4}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|3x+\frac{1}{3}\right|=0\Rightarrow x=-\frac{1}{9}\)
Vậy Min(A) = -1/4 khi x = -1/4
b) Ta có: \(\frac{3}{4}-\left|2x-\frac{1}{2}\right|0\le\frac{3}{4}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|2x-\frac{1}{2}\right|=0\Rightarrow x=\frac{1}{4}\)
Vậy Max(B) = 3/4 khi x = 1/4
a. Vì \(\left|3x+\frac{1}{3}\right|\ge0\forall x\)\(\Rightarrow A=\left|3x+\frac{1}{3}\right|-\frac{1}{4}\ge-\frac{1}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left|3x+\frac{1}{3}\right|=0\Leftrightarrow3x+\frac{1}{3}=0\Leftrightarrow x=-\frac{1}{9}\)
Vậy minA = - 1/4 <=> x = - 1/9
b. Vì \(\left|2x-\frac{1}{2}\right|\ge0\forall x\)\(\Rightarrow B=\frac{3}{4}-\left|2x-\frac{1}{2}\right|\le\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left|2x-\frac{1}{2}\right|=0\Leftrightarrow2x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}\)
Vậy maxB = 3/4 <=> x = 1/4
\(|\dfrac{4}{3}x-\dfrac{3}{4}|=\left|-\dfrac{1}{3}\right|.\left|x\right|\Leftrightarrow|\dfrac{4}{3}x-\dfrac{3}{4}|=\dfrac{1}{3}.\left|x\right|\left(1\right)\)
Tìm nghiệm \(\dfrac{4}{3}x-\dfrac{3}{4}=0\Leftrightarrow\dfrac{4}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}.\dfrac{3}{4}\Leftrightarrow x=\dfrac{9}{16}\)
\(x=0\)
Lập bảng xét dấu :
\(x\) \(0\) \(\dfrac{9}{16}\)
\(\left|\dfrac{4}{3}x-\dfrac{3}{4}\right|\) \(-\) \(0\) \(-\) \(0\) \(+\)
\(\left|x\right|\) \(-\) \(0\) \(+\) \(0\) \(+\)
TH1 : \(x< 0\)
\(\left(1\right)\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=\dfrac{1}{3}.\left(-x\right)\)
\(\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=-\dfrac{1}{3}.x\)
\(\Leftrightarrow\dfrac{4}{3}x-\dfrac{1}{3}x=\dfrac{3}{4}\)
\(\Leftrightarrow x=\dfrac{3}{4}\) (loại vì không thỏa \(x< 0\))
TH2 : \(0\le x\le\dfrac{9}{16}\)
\(\left(1\right)\Leftrightarrow-\dfrac{4}{3}x+\dfrac{3}{4}=\dfrac{1}{3}x\)
\(\Leftrightarrow\dfrac{4}{3}x+\dfrac{1}{3}x=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{5}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}.\dfrac{3}{5}\Leftrightarrow x=\dfrac{9}{20}\) (thỏa điều kiện \(0\le x\le\dfrac{9}{16}\))
TH3 : \(x>\dfrac{9}{16}\)
\(\left(1\right)\Leftrightarrow\dfrac{4}{3}x-\dfrac{3}{4}=\dfrac{1}{3}x\)
\(\Leftrightarrow\dfrac{4}{3}x-\dfrac{1}{3}x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{4}\) (thỏa điều kiện \(x>\dfrac{9}{16}\))
Vậy \(x\in\left\{\dfrac{9}{20};\dfrac{3}{4}\right\}\)