Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=1.2+2.3+...+99.100
A.3=1.2.3+2.3.3+...+99.100.3
A.3=1.2.[3-0]+2.3.[4-1]+...+99.100.[101-98]
A.3=1.2.3+2.3.4-1.2.3+...+99.100.101-99.100.98
A.3=99.100.101
A.3=999900
A=333300
Đặt A= 1.2+2.3 +.......+99.100
3A= 1.2.3+2.3.4+3.4.3 +......+ 99.100.3
3A= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... . 99.100. (101 - 98)
3A = (1.2.3 + 2.3.4 + 3.4.5 +...... + 99.100.101) - (0.1.2 + 1.2.3 + 2.3.4 +.......+ 98.99.100)
3A = 99.100.101 - 0.1.2
3A = 999900 - 0
3A= 999900
A= 999900 : 3
A = 333300
Học tốt nha!
đặt A = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
=> 3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
=> 3A = 99.100.101
=> A = 99.100.101 : 3
=> A = 333300
Tính tổng dãy sau :
Bài giải :
Đặt S = 1 . 2 + 2 . 3 + 3 . 4 + .... + 99 . 100
3S = 1 . 2 . 3 + 2 . 3 . 3 + 3 . 4 . 3 + ... + 98 . 99 . 3 + 99 . 100 . 3
= 1 . 2 . 3 + 2 . 3 ( 4 - 1 ) + 3 . 4 ( 5 - 2 ) + ... + 98 . 99 ( 100 - 97 ) + 99 . 100 ( 101 - 98 )
= 1 . 2 . 3 + 2 . 3 . 4 - 1 . 2 . 3 + 3 . 4 . 5 - 2 . 3 . 4 + ... - 97 . 98 . 99 + 99 . 100 . 101 - 98 . 99 . 100
3S = 99 . 100 .101
=> S = 99 . 100 .101 : 3
= ( 99 : 3 ) . ( 100 . 101 )
= 33 . 10 100
= 333 300
Ta có: A = 1.2 + 2.3 + 3.4 + 4.5 +.....+ 98.99
=> 3A = 1.2.(3 - 0) + 2.3.(4 - 1) + ..... +98.99.(100 - 97)
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ..... + 98.99.100
=> 3A = 98.99.100
=> A = 98.99.100 / 3
=> A = 323400
Bạn có thể làm như vầy nè:
Đặt 2 ra ngoài,ta có dạng S = 2 x (1/2.3 + 1/3.4 + ... + 1 x 98 x 99 + 1/99.100)
Với chú ý:1/2.3 = 1/2 - 1/3
1/3.4 = 1/3 - 1/4,........
Vậy S = 2 x ( 1/2 - 1/100) = 2 x (50/100 - 1/100) = 2.49/100 = 98/100 = 49/50
Chúc bạn học thiệt là giỏi!
\(Tac\text{ó}:\frac{2}{1.2}-\frac{2}{2.3}-\frac{2}{3.4}-...-\frac{2}{98.99}-\frac{2}{99.100}\)
=\(2.\left(\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{98.99}-\frac{1}{99.100}\right)\)
=\(2\left(1-\frac{1}{2}\right)\)
A=1.2+2.3+3.4+4.5+...+99.100
=>3A=1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3
=1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+99.100.(101-98)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100
=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+4.5.6-4.5.6+...+99.100.101
=99.100.101=999900
=>A=999900:3=333300
Vậy A=333300
a)=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
b)\(=\frac{201.204+1}{\left(201+2\right).204-407}\)
\(=\frac{201.204+1}{201.204+2.204-407}\)
\(=\frac{201.204+1}{201.204+1}\)
=1
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Áp dụng công thức: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Ta có:
VT=\(x-\left(\left(1-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{3}\right)-...\left(\frac{1}{98}-\frac{1}{99}\right)-\left(\frac{1}{99}-\frac{1}{100}\right)\right)\)
=\(x-\frac{1}{100}\)
Dễ dàng tìm được
\(x-\frac{1}{100}=\frac{1}{100}\)
\(x=\frac{1}{50}\)
A = 1.2+2.3+3.4+4.5+...+98.99+99.100
3A = 1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3A = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3A = 99.100.101
3A = 999900
A = 333300
nhấn đúng cho mk nha!!!!!!!!!!!!
Cái này trên mạng có