Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
\(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}\right)=\frac{15}{93}\)
\(\frac{1}{2}\)\(\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}\right)\)\(=\frac{15}{93}\)
\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{2x+3}\right)=\frac{15}{93}\)
\(\frac{1}{3}-\frac{1}{2x+3}=\frac{15}{93}:\frac{1}{2}=\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}=\frac{1}{93}\)
\(\Rightarrow2x+3=93\rightarrow2x=90\rightarrow x=45\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+....+\frac{1}{9.11}\)
\(2A=\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{9.11}\)(tắt 1 bước nha)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{9}-\frac{1}{11}\)
\(2A=\frac{1}{3}-\frac{1}{11}\)
\(2A=\frac{8}{33}\)
\(\Rightarrow A=\frac{4}{33}\)
Vậy A=_____________
ta có
\(\frac{1}{15}=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)\)
\(\frac{1}{35}=\frac{1}{2}\left(\frac{1}{5}-\frac{1}{7}\right)\)
\(\frac{1}{63}=\frac{1}{2}\left(\frac{1}{7}-\frac{1}{9}\right)\)
......................................
\(\frac{1}{143}=\frac{1}{2}\left(\frac{1}{11}-\frac{1}{13}\right)\)
Cộng hết lại: \(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)=\frac{1}{2}.\frac{10}{39}=\frac{5}{39}\)
B = \(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)
\(\Rightarrow B=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)
\(\Rightarrow B=\frac{1.2}{3.5.2}+\frac{1.2}{5.7.2}+\frac{1.2}{7.9.2}+\frac{1.2}{9.11.2}+\frac{1.2}{11.13.2}\)
\(\Rightarrow B=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(\Rightarrow B=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(\Rightarrow B=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(\Rightarrow B=\frac{1}{2}.\frac{10}{39}\)
\(\Rightarrow B=\frac{5}{39}\)
Vậy \(B=\frac{5}{39}\)
P=1/3+1/15+1/35+1/63+1/99
=1:3+1:15+1:35+1:63+1:99
=1:(3+15+35+63+99)
=1:215
=1/215
Vậy:P=1/215
nhìn công thức đây này \(\sqrt[]{\sqrt{ }\hept{\begin{cases}\\\end{cases}}\frac{ }{ }^{ }_{ }\hept{\begin{cases}\\\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\hept{\begin{cases}\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}}\) xong rồi đó không cần cảm ơn
B = 1/4 + 1/15 + 1/35 + 1/63 + 1/99 + 1/143 + 1/195
= 1/4 + 1/(3.5) + 1/(5.7) + 1/(7.9) + 1/(9.11) + 1/(11.13) + 1/(13.15)
= 1/4 + 1/2.(1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 + 1/11 - 1/13 + 1/13 - 1/15)
= 1/4 + 1/2.(1/3 - 1/15)
= 1/4 + 1/2 . 4/15
= 1/4 + 2/15
= 23/60
Gọi dãy là A ta có :
A = 1/3.5 + 1/5.7 + 1/7.9 + 1/9.11 + 1/11.13
A = 1/2 . ( 2/3.5 + 2/5.7 + 2/7.9 + 2/9.11 + 2/11.13 )
A = 1/2 . ( 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 + 1/11 - 1/13 )
A = 1/2 . ( 1/3 - 1/13 )
A = 1/2 . 10/39
A = 5/39
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)
=\(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
=\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
=\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)\)
=\(\frac{1}{2}.\frac{10}{39}\)
=\(\frac{5}{39}\)
1/15+1/35+1/63+1/99+1/143
=1/2x(1/15+1/35+1/63+1/99+1/143)
=1/2x(2/3x5+2/5x7+2/7x9+2/9x11+2/11x13)
=1/2x(1/3-1/5+1/7-1/9+1/9-1/11+1/11-1/13)
=1/2x(1/3-1/13)
=1/2x10/39
=5/39
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+.....+\frac{1}{129.15}=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+....+\frac{1}{1935}\)
=\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{43.45}\)
=\(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.....+\frac{1}{43}-\frac{1}{45}\right)\)
=\(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{45}\right)\)
=\(\frac{1}{2}.\frac{43}{90}\)
=\(\frac{43}{180}\)