Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2009.2011}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}\right)+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}\left(\frac{1}{2009}-\frac{1}{2011}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2011}\right)\)
\(=\frac{1}{2}.\frac{2010}{2011}=\frac{1005}{2011}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2011}\right)=\frac{1}{2}.\left(1-\frac{1}{2011}\right)=\frac{1}{2}.\frac{2010}{2011}=\frac{1005}{2011}\)
1/.3 + 1/3.5 + 1/5.7 + ... + 1/2009.2011
= 1/2 . ( 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/2009.2011)
= 1/2 . (1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/2009 - 1/2011)
= 1/2 . (1 - 1/2011)
= 1/2 . 2010/2011
= 1005/2011
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2009.2011}\)
\(=\frac{1}{2}x\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(=\frac{1}{2}x\left(1-\frac{1}{2011}\right)\)
\(=\frac{1005}{2011}\)
a, 1 + 2 + 3 + ... + x = 120
=> (x+1)x/2 = 120
=>x(x +1)=120.2=240
=>15.16 = 240
=>x=15
Vậy x=15
Phần b làm tương tự
c, x - ( 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/53.55) = 3/5
=> x = 3/5 + ( 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/53.55)
=> x = 3/5 + ( 1-1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/53 - 1/55 )
=> x = 3/5 + ( 1- 1/55 )
=> x = 3/5 + 54/55
=> x = 87/55
Vậy x = 87/55
S=(1/1.3+1/3.5+.....+1/7.9)+(1/2.4+1/4.8+1/8.10)
2S=1/2.(1-1/3+1/5-1/5+....+1/7-1/9)+(1/2-1/4+1/4-1/8+1/8-1/10)
2S=1/2.(1-1/9)+(1/2-1/10)
2S=1/2.(8/9+2/5)
=1/2(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9)+1/9.10
=1/2(1-1/9)+1/90
=1/2.8/9+1/90=4/9+1/90=41/90
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+....+\frac{1}{99\cdot101}\)
\(=2\cdot\frac{1}{2}\cdot\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{99\cdot101}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\right)\)
\(=\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2} \cdot\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{2}\cdot\frac{100}{101}\)
\(=\frac{50}{101}\)
Gọi \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2011.2013}\)
\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2011.2013}\)
\(\Rightarrow2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2011}-\frac{1}{2013}\)
\(\Rightarrow2A=1-\frac{1}{2013}\)
\(\Rightarrow2A=\frac{2012}{2013}\)
\(\Rightarrow A=\frac{1006}{2013}\)