Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2+2}{2xy^3}-\frac{2x+2}{2xy^3}=\frac{x^2+2-2x-2}{2xy^3}=\frac{x^2-2x}{2xy^3}=\frac{x\left(x-2\right)}{2xy^3}=\frac{x-2}{2y^3}\)
\(\frac{4}{x-5}-\frac{1}{x+5}+\frac{13x-x^2}{25-x^2}=\frac{4}{x-5}-\frac{1}{x+5}+\frac{x^2-13x}{x^2-25}\)
\(=\frac{4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{\left(x-5\right)\left(x+5\right)}+\frac{x^2-13x}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{4x+20-x+5+x^2-13x}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}=\frac{\left(x-5\right)^2}{\left(x-5\right)\left(x+5\right)}=\frac{x-5}{x+5}\)
a, \(\frac{x+1}{2x+6}=\frac{x+1}{2\left(x+3\right)}\)
b, \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}\)
\(=\frac{3x}{2x\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}=\frac{2x+6}{2x\left(x+3\right)}=\frac{2\left(x+3\right)}{2x\left(x+3\right)}=\frac{1}{x}\)
c, \(\frac{x-x-2xy+x}{x+2y}+\frac{4xy}{4y^2-x^2}=\frac{x-2xy}{x+2y}+\frac{4xy}{\left(2y-x\right)\left(x+2y\right)}\)
\(=\frac{\left(x-2xy\right)\left(2y-x\right)}{\left(x+2y\right)\left(2y-x\right)}+\frac{4xy}{\left(2y-x\right)\left(x+2y\right)}=\frac{2xy-x^2+4xy^2+2x^2y}{\left(2y-x\right)\left(x+2y\right)}\)
\(\frac{x+2}{x}+\frac{2x-1}{2-x}-\frac{x-8}{x^2-2x}\)
\(=\frac{x+2}{x}-\frac{2x-1}{x-2}-\frac{x-8}{x\left(x-2\right)}\)
\(=\frac{\left(x-2\right)^2}{x\left(x-2\right)}-\frac{x\left(2x-1\right)}{x\left(x-2\right)}-\frac{x-8}{x\left(x-2\right)}\)
\(=\frac{x^2-4x+4-2x^2+x-x+8}{x\left(x-2\right)}=\frac{-x^2-4x+12}{x\left(x-2\right)}\)
\(=\frac{\left(x+6\right)\left(x-2\right)}{x\left(x-2\right)}=\frac{x+6}{x}\)
a: 3x-2=2x-3
=>x=-1
b: 2x+3=5x+9
=>-3x=6
=>x=-2
c: 5-2x=7
=>2x=-2
=>x=-2
d: 10x+3-5x=4x+12
=>5x+3=4x+12
=>x=9
e: 11x+42-2x=100-9x-22
=>9x+42=78-9x
=>18x=36
=>x=2
f: 2x-(3-5x)=4(x+3)
=>2x-3+5x=4x+12
=>7x-3=4x+12
=>3x=15
=>x=5
1: \(\dfrac{x-3}{x+1}=\dfrac{x^2}{x^2-1}\)
=>(x-3)(x-1)=x^2
=>x^2=x^2-4x+3
=>-4x+3=0
=>x=3/4
2: \(\dfrac{5}{3x+2}=2x-1\)
=>(2x-1)(3x+2)=5
=>6x^2+4x-3x-2-5=0
=>6x^2+x-7=0
=>6x^2+7x-6x-7=0
=>(6x+7)(x-1)=0
=>x=1hoặc x=-7/6
a, \(\frac{x+1}{2x+6}+\frac{2x+3}{x^2+3x}=\frac{x+1}{2\left(x+3\right)}+\frac{3x+2}{x\left(x+3\right)}\)
\(=\frac{x^2+x}{2x\left(x+3\right)}+\frac{6x+4}{2x\left(x+3\right)}=\frac{x^2+7x+4}{2x\left(x+3\right)}\)
b, Sua de : \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}\)
\(=\frac{3x}{2x\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}=\frac{2x+6}{2x\left(x+3\right)}=\frac{1}{x}\)