Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Đặt \(x-2=t\ne0\Rightarrow x=t+2\)
\(B=\dfrac{4\left(t+2\right)^2-6\left(t+2\right)+1}{t^2}=\dfrac{4t^2+10t+5}{t^2}=\dfrac{5}{t^2}+\dfrac{2}{t}+4=5\left(\dfrac{1}{t}+\dfrac{1}{5}\right)^2+\dfrac{19}{5}\ge\dfrac{19}{5}\)
\(B_{min}=\dfrac{19}{5}\) khi \(t=-5\) hay \(x=-3\)
2.
Đặt \(x-1=t\ne0\Rightarrow x=t+1\)
\(C=\dfrac{\left(t+1\right)^2+4\left(t+1\right)-14}{t^2}=\dfrac{t^2+6t-9}{t^2}=-\dfrac{9}{t^2}+\dfrac{6}{t}+1=-\left(\dfrac{3}{t}-1\right)^2+2\le2\)
\(C_{max}=2\) khi \(t=3\) hay \(x=4\)
ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
Ta có: \(\dfrac{x-3}{x+1}=\dfrac{x^2}{x^2-1}\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}\)
Suy ra: \(x^2-4x+3-x^2=0\)
\(\Leftrightarrow-4x=-3\)
hay \(x=\dfrac{3}{4}\)(thỏa ĐK)
Vậy: \(S=\left\{\dfrac{3}{4}\right\}\)
2:
a: =>x-1=0 hoặc 3x+1=0
=>x=1 hoặc x=-1/3
b: =>x-5=0 hoặc 7-x=0
=>x=5 hoặc x=7
c: =>\(\left[{}\begin{matrix}x-1=0\\x+5=0\\3x-8=0\end{matrix}\right.\Leftrightarrow x\in\left\{1;-5;\dfrac{8}{3}\right\}\)
d: =>x=0 hoặc x^2-1=0
=>\(x\in\left\{0;1;-1\right\}\)
1)
\((x+2)(x+3)(x+4)(x+5)-24\\=[(x+2)(x+5)]\cdot[(x+3)(x+4)]-24\\=(x^2+7x+10)(x^2+7x+12)-24\)
Đặt \(x^2+7x+10=y\), khi đó biểu thức trở thành:
\(y(y+2)-24\\=y^2+2y-24\\=y^2+2y+1-25\\=(y+1)^2-5^2\\=(y+1-5)(y+1+5)\\=(y-4)(y+6)\\=(x^2+7x+10-4)(x^2+7x+10+6)\\=(x^2+7x+6)(x^2+7x+16)\)
2) Bạn xem lại đề!
\(...\Rightarrow x^3-9x^2+27x-27-\left(x^3-27\right)+9\left(x^2+2x+1\right)=15\)
\(\Rightarrow x^3-9x^2+27x-27-x^3+27+9x^2+18x+9=15\)
\(\Rightarrow45x+9=15\Rightarrow45x=6\Rightarrow x=\dfrac{6}{45}=\dfrac{2}{15}\)
\(\Leftrightarrow2\left(x+1\right)^3=56\Leftrightarrow\left(x+1\right)^3=28\Leftrightarrow\)
Sửa đề: \(\dfrac{x+2}{2014}+\dfrac{x+1}{2015}=\dfrac{x+2001}{15}+\dfrac{x+2014}{2}\)
Ta có: \(\dfrac{x+2}{2014}+\dfrac{x+1}{2015}=\dfrac{x+2001}{15}+\dfrac{x+2014}{2}\)
\(\Leftrightarrow\dfrac{x+2}{2014}+1+\dfrac{x+1}{2015}+1=\dfrac{x+2001}{15}+1+\dfrac{x+2014}{2}+1\)
\(\Leftrightarrow\dfrac{x+2016}{2014}+\dfrac{x+2016}{2015}=\dfrac{x+2016}{15}+\dfrac{x+2016}{2}\)
\(\Leftrightarrow\dfrac{x+2016}{2014}+\dfrac{x+2016}{2015}-\dfrac{x+2016}{15}-\dfrac{x+2016}{2}=0\)
\(\Leftrightarrow\left(x+2016\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{15}-\dfrac{1}{2}\right)=0\)
mà \(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{15}-\dfrac{1}{2}\ne0\)
nên x+2016=0
hay x=-2016
Vậy: S={-2016}
b1 A=10000 B=23386
b2 a,x=5
b,x=4 x=2
có lẽ bn nên tự lm thì hơn
a: \(x^2-10x=-25\)
\(\Leftrightarrow x-5=0\)
hay x=5
b: \(x^2-6x+8=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Ta có: \(\left(1-x\right)^2+\left(x-x^2\right)+3=0\)
\(\Leftrightarrow x^2-2x+1+x-x^2+3=0\)
\(\Leftrightarrow4-x=0\)
hay x=4
Vậy: S={4}
$⇔x^2-2x+1+x-x^2+3=0$
$⇔-x=-4$
$⇔x=4$
Vậy phương trình đã cho có tập nghiệm S={4}