Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2A=1+1/2+1/4+1/8+1/16+1/32+1/64
2A-A=(1+1/2+1/4+1/8+1/16+1/32+1/64)-(1/2+1/4+1/8+1/16+1/32+1/64+1/128)
A=1-1/128
A=127/128
A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
suy ra: 2A = 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
2A - A = 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 - 1/2 - 1/4 - 1/8 - 1/16 - 1/32 - 1/64 - 1/128
A = 1 - 1/128 = 127/128
hok tốt
1/2 + 1/4 + 1/8 + 1/16+ 1/32 + 1/64 + 1/128
= 64/ 128 + 32/128 + 16/128 +8/128 + 4/128 +2/128 + 1/128
= ( 64 + 32 + 16 + 8 + 4 + 2 + 1 ) /128
= 127/ 128
= 1 - 1/2 + 1/2 - 1/4 + 1/4 - ............ + 1/64 - 1/128
= 1 - 1/128
= 127/128
k nha bn
Quy đồng các phân số:\(\frac{1}{2}\);\(\frac{1}{4}\);\(\frac{1}{8}\);\(\frac{1}{16}\);\(\frac{1}{32}\);\(\frac{1}{64}\)
\(\frac{32}{64}\)+\(\frac{16}{64}\)+\(\frac{8}{64}\)+\(\frac{4}{64}\)+\(\frac{2}{64}\)+\(\frac{1}{64}\)=\(\frac{63}{64}\)
Kết quả bằng \(\frac{63}{64}\)
____HỌC TỐT____
Câu trả lới được đăng bởi Vật Lý Lương Tử
\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)
\(\dfrac{4}{2}A=\dfrac{4}{2}\cdot\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\right)\)
\(2A=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}\)
\(2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\right)\)
\(A=\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+..\left(\dfrac{1}{32}-\dfrac{1}{32}\right)+\left(1-\dfrac{1}{64}\right)\)
\(A=1-\dfrac{1}{64}\)
\(A=\dfrac{63}{64}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(2A=\frac{1}{2}\times2+\frac{1}{4}\times2+\frac{1}{8}\times2+\frac{1}{16}\times2+\frac{1}{32}\times2+\frac{1}{64}\times2+\frac{1}{128}\times2+\frac{1}{256}\times2\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right)\)
\(A=1-\frac{1}{256}\)
\(A=\frac{255}{256}\)
a) \(D=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+...+\frac{1}{512}+\frac{1}{1024}\)
=> \(2D=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...++\frac{1}{256}+\frac{1}{512}\)
=> \(2D-D=\left(1+\frac{1}{2}+...+\frac{1}{512}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)\)
=> \(D=1-\frac{1}{1024}\)
b) \(Đ=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)
\(=1-\frac{1}{20}=\frac{19}{20}\)
a) D=\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\dots+\frac{1}{512}+\frac{1}{1024}.\)
\(D=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\dots+\frac{1}{512}-\frac{1}{1024}\)
\(D=1-\frac{1}{1024}\)
\(D=\frac{1023}{1024}\)
\(Đ=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\dots+\frac{1}{18\cdot19}+\frac{1}{19\cdot20}\)
\(Đ=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\dots+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)
\(Đ=1-\frac{1}{20}\)
\(Đ=\frac{19}{20}\)
Phần c như kiểu sai đề chỗ cuối hay sao ấy.
Đặt A = 1/2 + 1/4 + 1/8 + 1/16 + ... + 1/2048
2A = 1 + 1/2 + 1/4 + 1/8 + ... + 1/1024
2A - A = 1 + 1/2 + 1/4 + 1/8 + ... + 1/1024 - 1/2 - 1/4 - 1/8 - 1/16 - ... . 1/2048
A = 1 - 1/ 2048
A = 2047 / 2048
Vậy 1/2+ 1/4 + 1/8 + 1/16 + ... + 1/2048 = 2047/2048
Ta có : \(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}+\frac{1}{2^8}\)
\(\Rightarrow2A=1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^6}+\frac{1}{2^7}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^6}+\frac{1}{2^7}\right)-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}+\frac{1}{2^8}\right)\)
\(\Rightarrow A=1-\frac{2}{8}=\frac{256}{256}-\frac{1}{256}=\frac{255}{256}\)
A=1-1/2+1/2-1/4+1/4-1/8+1/8-1/16+1/16-1/32+1/32-1/64
A=1- bạn gạch chéo từ 1/2(đầu tiên) đến 1/32 nha
A=1-1/64=65/64.
B=Bạn làm tương tự như trên nha
k mik nha. Thanks. Chúc bạn học tốt!!!
a) A=1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
2A=1+1/2+1/4 + 1/8 + 1/16 + 1/32
2A-A= 1+1/2+1/4+1/8+1/16+1/32-(1/2+1/4+1/8+1/16+1/32+1/64)
A= 1-1/64=63/64
b) B= 1/4+1/8+1/16+......+1/512
2B= 1/2+1/4+1/8+1/16+......+1/256
2B-B=1/2+1/4+1/8+1/16+.....+1/256-(1/4+1/8+1/16+.....+1/512)
B=1/2-1/512=255/512