Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x-y-z = 0
\(\Rightarrow\) x = y+z
\(\Rightarrow\)y = x-z
\(\Rightarrow\)z = x-y
Thay vào B ta suy ra: \(\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
= \(\left(1-\frac{x-y}{x}\right)\left(1-\frac{y+z}{y}\right)\left(1+\frac{x-z}{z}\right)\)
= \(\left(\frac{-y}{x}\right).\left(\frac{z}{y}\right).\left(\frac{x}{z}\right)\)
= -y/y
= -1
Vậy B = -1
x-y-z=0
=> x=y+z
y=x-z
-z=y-x
B=(1-z/x)(1-x/y)(1+y/z)
B=((x-z)/x)((y-x)/y)((z+y)/z)
B=(y/x)(-z/y)(x/z)
B=(-z.y.x)/(x.y.z)
B=-1
\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\\ \Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\\ \Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\\ \Rightarrow x=y=z\\ \Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)
\(a.\left(x+y+z\right)\left(x+y+z\right)=x^2+xy+xz+xy+y^2+zy+zx+zy+z^2=x^2+y^2+z^2+2xy+2zy+2zx\)
\(b.\left(x-y+z\right)\left(x-y-z\right)=x^2-xy-zx-xy+y^2+zy+zx-zy-z^2=x^2+y^2-z^2-2xy\)
\(c.\left(x-1+y\right)\left(x-1-y\right)=x^2-x-xy-x+1+y+xy-y-y^2=x^2-y^2-2x+1\)
a) = \(^{\left(x+y+z\right)^2}\)=\(x^2\)+\(y^2\)+\(z^2\)+ 2xy +2xz+2yz
b) = \(\left(x-y\right)^2\)-\(z^2\)=\(x^2\)- 2xy+\(y^2\)-\(z^2\)
c)= \(\left(x-1\right)^2\)-\(y^2\)= \(x^2\)-2x+1 - \(y^2\)