Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét t.giác ABM và t.giác ACM có:
AB=AC(gt)
AM cạnh chung
=> t.giác ABM=t.giác ACM(CH-CGV)
a) Áp dụng định lí Pi - ta - go, ta có:
102 - 52 = 75 => AC = \(\sqrt{75}\)
Còn mấy phần kia mình hơi vội nên chưa lm đc thông cảm nhé
Bạn vẽ HCNhật ABCD,kẻ đường chéo AC.
Có chiều dài =10dm,rộng 5dm
=>theo định lý Pytago, ta có:
AB^2+BC^2=AC^2
Mà AB=10dm;BC=5dm
=>AC^2=10^2+5^2=125
=>AC=căn bậc hai của 125
tick nha
Bạn vẽ HCNhật ABCD,kẻ đường chéo AC.
Có chiều dài =10dm,rộng 5dm
=>theo định lý Pytago, ta có:
AB^2+BC^2=AC^2
Mà AB=10dm;BC=5dm
=>AC^2=10^2+5^2=125
=>AC=căn bậc hai của 125
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
Suy ra: DA=DE
b: Xét ΔDEC vuông tại E và ΔDAF vuông tại A có
DE=DA
\(\widehat{EDC}=\widehat{ADF}\)
Do đó: ΔDEC=ΔDAF
c: \(\widehat{BED}=\widehat{BAD}=90^0\)
\(\widehat{EBD}=\dfrac{90^0-40^0}{2}=25^0\)
\(\widehat{EDB}=90^0-25^0=55^0\)
Bài dễ:
Vẽ hình ra bạn( sửa lại cái đề là AB=AC)
a, Ta có: góc B = góc C có chung cạnh BC
E=D=90o
Do đó tg BDC= tg CEB
b, kí hiệu góc B1 ở trên B2 ở dưới; bên góc C cũng vậy
Ta có : gB=gC; gB2=gC2;
gB=gB1+gB2; gC=gC1+gC2;
Do đó gB1=gB2(dpcm)
c, Vì ABC là tgiac cân và AI cắt BC tại trung điểm H
Nên AH vuông góc vs BC hay AI vuông góc vs BC
---end---
Bài 1:
Giải:
Xét \(\Delta ABC\left(\widehat{B}=90^o\right)\), áp dụng định lí Py-ta-go có:
\(AB^2+BC^2=AC^2\)
\(\Rightarrow10^2+5^2=AC^2\)
\(\Rightarrow AC^2=125\)
\(\Rightarrow AC=\sqrt{125}\left(dm\right)\)
Vậy \(AC=\sqrt{125}\left(dm\right)\)
Bài 2: sai đề
Ta có : OB = OD = \(\frac{BD}{2}=\frac{16}{2}=8\) ( 0 là trung điểm của BD )
OA = OC = \(\frac{AC}{2}=\frac{12}{2}=6\) ( O là trung điểm của AC )
+ \(\Delta AOB\) , có :
AB2 = OA2 + OB2
AB2 = 6 + 8
AB2 = 14
AB = \(\sqrt{14}\)
Ta có : BC = CD = AD = AB
=> BC = CD = AD = AB = \(\sqrt{14}\)