K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2016

 

2. Giả sử S là số chính phương 

S = abc + bcacab

   = 100a + 10b + c + 100b + 10c + a + 100c + 10a + b

   = 111a + 111b + 111c

   = 111 (a + b + c)

   = 3 . 37 . (a + b + c)

   Vì S là số chính phương nên khi phân tích S là thừa số nguyên tố sẽ có số mũ chẵn.

 => 3 (a + b + c) chia hết cho 37

   Mà 3 và 37 là 2 số nguyên tố cùng nhau

 => (a + b + c) chia hết cho 37

Vì a + b + c \(\le\) 27

 => (a + b + c) không chia hết cho 27.

Vậy S không phải là số chính phương.

6 tháng 7 2015

S=abc+bca+cab

=  (1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)

=  1011*(a+b+c) =3*337*(a+b+c)  

Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)  

Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)  

Vậy không tồn tại số chính phương S

1 tháng 3 2016

đây là toán 6,dễ, tự nghĩ đi

30 tháng 1 2018
Cho x>y>0.Chứng Minh Rằng x^2+y khong phai là số chính phương
6 tháng 1 2016

 

S=abc+bca+cab=ax100+bx10+c+bx100+cx10+ax1+cx100+ax10+b=ax111+bx111+

Cx111=(a+b+c)x111

Vì số chính phương có dạng a^2 mà a+b+c có tổng nhiều nhất là 27 nên suy ra S không phải số chính phương(điều cần chứng minh)

20 tháng 6 2016

\(S=\overline{abc}+\overline{bca}+\overline{cab}\)

\(=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)\)

\(=111a+111b+111c\)

\(=111\left(a+b+c\right)=37.3\left(a+b+c\right)\)

vì : \(0< a,b,c\le9;\left(a;b;c\in N\right)\)

\(\Rightarrow a+b+c\le27\)

\(\Rightarrow a+b+c⋮̸37̸\)

mà \(\left(3,37\right)=1\)

\(\Rightarrow3\left(a+b+c\right)⋮̸37̸\)

do đó S không là số chính phương

20 tháng 6 2016

S=abc+bca+cab= 
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)= 
1011*(a+b+c) =3*337*(a+b+c) 

Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*) 

Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*) 

Vậy không tồn tại số chính phương S

14 tháng 10 2018

S = abc + bca + cab = 100a + 10b + c + 100b + 10c + a + 100c + 10a + b

= (100a + a + 10a) + (10b + 100b + b) + (c + 10c + 100c)

= 111a + 111b + 111c

= 111(a + b + c)

=> S ko phải là số chính phương

21 tháng 7 2015

ta có : abc + bca + cab = 111a + 111b + 111c 

                                         = 111 . (a+b+c)

                                         = 3. 37 . (a+b+c) 

Để S là số chính phương thì a+b+c = 3. 37 . k^2. 

Mà a+ b+ c < hoặc = 27 nên : 

                      Vay tog S ko phai la so chih phuong 

2 tháng 6 2015

ta có 

s = abc + bca + cab

=> s =( 100a + 10b + c)+ ( 100b + 10c + a)+( 100c + 10a+b )

=>S = 100a + 10b + c + 100b  + 10c + a + 100c + 10a + b

=> S = 111a + 111b + 111c

=> S = 111( a+b+c )= 37 . 3( a+b + c)

giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn nên

                       3(a+b+c) chia hết 37

                      => a+b+c chia hết cho 37 

Điều này không xảy ra vì           1 \(\le a+b+c\le27\) 

vậy S = abc + bca + cab không phải là số chính phương

1 tháng 6 2015

S = abc (ngang) + bca (ngang) + cab (ngang)

    = 100a + 10b + c + 100b + 10c + a + 100c + 10a + b

    = 111a + 111b + 111c

     = 111.(a + b + c)

=> Không phải là số chính phương vì a,b,c là các chữ số tự nhiên nên a + b + c \(\ne\) 111

17 tháng 10 2016

=> S=100a+10b+c+100b+10c+a+100c+10a+b

=> S=(100a+a+10a)+(10b+100b+b)+(c+10c+100c)

=> S=111a+111b+111c

=> S=111(a+b+c)

Vì a;b;c là số có 1 chưc số => a+b+c \(\le27\)

Mà 27<111 => S không thể nào là số chính phương

23 tháng 2 2016

S=abc+bca+cab

S=(100.a)+(b.10)+c+(100.b)+(c.10)+a+(c.100)+(a.10)+b

S=(100.a+10.a+a).(100.b+10.b+b)+(100.c+10.c+c)

S=111.a+111.b+111.c

S=111.(a+b+c)

=> S không phải số chính phương

Chúc bạn học tốt nha !!!

14 tháng 5 2017

S = abc + bca + cab

S = 100a+10b+c+100b+10c+a+100c+10a+b

S=111a+111b+111c

S=111 x (a+b+c)

=> S không phải số chính phương vì a+b+c là các số tự nhiên có 1 chữ số nên a+b+c <111