K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

áp dụng tính chất hai dãy tỉ số bằng nhau nha bạn

17 tháng 12 2018

\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(\Leftrightarrow\frac{x}{a}+\frac{y}{b}=\frac{y}{b}+\frac{z}{c}=\frac{z}{c}+\frac{x}{a}\)

\(\hept{\begin{cases}\frac{x}{a}+\frac{y}{b}=\frac{y}{b}+\frac{z}{c}\Rightarrow\frac{x}{a}=\frac{z}{c}\\\frac{z}{c}+\frac{x}{a}=\frac{y}{b}+\frac{z}{c}\Rightarrow\frac{x}{a}=\frac{y}{b}\\\frac{x}{a}+\frac{y}{b}=\frac{z}{c}+\frac{x}{a}\Rightarrow\frac{y}{b}=\frac{z}{c}\end{cases}}\Rightarrow\frac{x}{a}=\frac{z}{c}=\frac{y}{b}.\text{đăt}k=\frac{x}{a}=\frac{z}{c}=\frac{y}{b}\Rightarrow x=ak,z=ck,y=bk\)

ta có: \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{k^2.\left(x^2+y^2+z^2\right)}{\left(x^2+y^2+z^2\right)}=k^2\Rightarrow k^2=2k\Rightarrow k^2-2k=0\Rightarrow k.\left(k-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}k=0\\k=2\end{cases}\text{mà a,b,c và x,y,z khác 0. }\Rightarrow k=2\Rightarrow x=2a,y=2b,z=2c}\)

p/s: bài nì khó chơi vc =.=" sai sót bỏ qua ^^'

9 tháng 10 2015

vế 1 thiếu x

vế 2 thiếu y

vế 3 thiếu z

nhấn ba vế với cái thiếu

ta có

\(\frac{bxz-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxy}{cz}\)

Theo TCDTSBN`, ta có

 

\(\frac{bxz-cxy}{ax}=\frac{cxy-ayz}{by}=\frac{ayz-bxy}{cz}\)

= cộng chừng đó lại tử + tử, mẫu + mẫu

=0/(ax+by+cz)

=0

=>bzx=cxy

=>cxy=ayz

=>bxz=cxy=ayz

=>a:b:c=x:y:z

đó mỏi tay lắm rồi đó

mk k viết đề nha bạn!

\(=>\frac{a\left(bz-cy\right)}{a^2}=\frac{b\left(cx-az\right)}{b^2}=\frac{c.\left(by-ax\right)}{c^2}\)

\(=>\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{cay-bcx}{c^2}\)\(=\frac{abz-acy+bcx-acz+cay-bcx}{a^2+b^2+c^2}=0\)

\(=>\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bc}{c}=0\)

=> bz - cy = cx - az = ay - bx = 0

+) bz - cy = 0 => bz = cy => y / b = z/c 

+) cx - az = 0 => cx = az => x / a = z/ c
=> x / a = y / b = z/ c ( dpcm )

18 tháng 9 2015

Chứng minh x,y,z = a,b,y là sao ? Là x : y : z = a : b : y hay thế nào ?

18 tháng 9 2015

x,y,z = a,b,y là gì vậy?

21 tháng 7 2015

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{a.\left(bz-cy\right)}{a^2}=\frac{b.\left(cx-az\right)}{b^2}=\frac{c.\left(ay-bx\right)}{c^2}\)

\(=\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}\)

\(=\frac{0}{a^2+b^2+c^2}=0\)

suy ra:

\(\frac{bz-cy}{a}=0\Rightarrow bz-cy=0\Rightarrow bz=cy\Rightarrow\frac{b}{y}=\frac{c}{z}\)

\(\frac{cx-az}{b}=0\Rightarrow cx-az=0\Rightarrow cx=az\Rightarrow\frac{c}{z}=\frac{a}{x}\)

\(\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\Rightarrow x:y:z=a:b:c\)

10 tháng 1 2020

\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{xz}{cx+az}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(1\right)\)

Ta có: \(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{xz}{cx+az}.\)

\(\Rightarrow\frac{xyz}{ayz+bxz}=\frac{xyz}{bxz+cxy}=\frac{xyz}{cxy+ayz}.\)

\(\Rightarrow ayz+bxz=bxz+cxy=cxy+ayz\)

\(\Rightarrow\left\{{}\begin{matrix}ayz+bxz=bxz+cxy\\ayz+bxz=cxy+ayz\\bxz+cxy=cxy+ayz\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ayz=cxy\\bxz=cxy\\bxz=ayz\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}az=cx\\bz=cy\\bx=ay\end{matrix}\right.\left(2\right)\)

Thay (2) vào (1) ta được:

\(\frac{xy}{ay+ay}=\frac{yz}{bz+bz}=\frac{xz}{cx+cx}\)

\(\Rightarrow\frac{xy}{2ay}=\frac{yz}{2bz}=\frac{xz}{2cx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(\Rightarrow\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(3\right).\)

\(\Rightarrow\frac{x^2}{4a^2}=\frac{y^2}{4b^2}=\frac{z^2}{4c^2}=\frac{\left(x^2+y^2+z^2\right)^2}{\left(a^2+b^2+c^2\right)^2}=\frac{x^2+y^2+z^2}{4a^2+4b^2+4c^2}\)

\(\Rightarrow\frac{x^2+y^2+z^2}{4a^2+4b^2+4c^2}=\frac{1.\left(x^2+y^2+z^2\right)}{4.\left(a^2+b^2+c^2\right)}\)

\(\Rightarrow\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{1}{4}\left(4\right).\)

Từ (3) và (4)

\(\Rightarrow\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}=\frac{1}{4}.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2a}=\frac{1}{4}\\\frac{y}{2b}=\frac{1}{4}\\\frac{z}{2c}=\frac{1}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{4}.2a\\y=\frac{1}{4}.2b\\z=\frac{1}{4}.2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{a}{2}\\y=\frac{b}{2}\\z=\frac{c}{2}\end{matrix}\right.\)

Vậy \(x=\frac{a}{2};y=\frac{b}{2};z=\frac{c}{2}\left(x,y,z\ne0\right);\left(a,b,c\ne0\right).\)

Chúc bạn học tốt!