Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x + 20)⁴ + (2y - 1)²⁰²⁴ ≤ 0
⇒ (x + 20)⁴ = 0 và (2y - 1)²⁰²⁴ = 0
*) (x + 20)⁴ = 0
x + 20 = 0
x = 0 - 20
x = -20
*) (2y - 1)²⁰²⁴ = 0
2y - 1 = 0
2y = 1
y = 1/2
M = 5.(-20)².1/2 - 4.(-2).(1/2)²
= 1000 + 2
= 1002
\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
\(TH1:x+y+z=0\)
\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)
\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)
\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)
\(TH2:x+y+z\ne0\)
\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)
sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N
mà đề là x+y+z khác 0 -.-
1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)
Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu a + b + c + d = 0
=> a + b = -(c + d)
=> b + c = (-a + d)
=> c + d = -(a + b)
=> d + a = (-b + c)
Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4
Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)
Khi đó M = 1 + 1 + 1 + 1 = 4
2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)
Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)
b) 72x + 72x + 3 = 344
=> 72x + 72x.73 = 344
=> 72x.(1 + 73) = 344
=> 72x = 1
=> 72x = 70
=> 2x = 0 => x = 0
c) Ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)
=> 2x + 2 = 14 => x = 6 ;
2y - 4 = 6 => y = 5 ;
6 + 5 + z = 17 => z = 6
Vậy x = 6 ; y = 5 ; z = 6
3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau)
=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;
Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0
Vậy c = 0 hoặc b = 0
c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)
Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)
Vậy P = 8
2. b) \(7^{2x}+7^{2x+3}=344\)
\(7^{2x}\cdot\left(1+7^3\right)=344\)
\(7^{2x}\cdot\left(1+343\right)=344\)
\(7^{2x}\cdot344=344\)
\(7^{2x}=1\)
\(7^{2x}=7^0\)
\(2x=0\)
\(x=0\)
Ta có : \(\hept{\begin{cases}\left(x-2\right)^4\ge0\forall x\\\left(2y-1\right)^{2018}\ge0\forall y\end{cases}\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2018}\ge0\forall x,y}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2\right)^4=0\\\left(2y-1\right)^{2018}=0\end{cases}\Rightarrow\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\2y=1\end{cases}}}\Rightarrow\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)
Khi đó : \(M=11.2^2.\frac{1}{2}+4.2.\left(\frac{1}{2}\right)^2=\frac{11.4}{2}+\frac{4.2}{4}=22+2=24\)
Vậy M = 24
\(3x-2y+1=0\Rightarrow y=\frac{3x+1}{2}\)
Do y nguyên nên \(\frac{3x+1}{2}\in Z\Rightarrow x=2k+1\)
Khi đó \(P=\left|x\right|+\left|\frac{3x+1}{2}\right|\), ta tiến hành phá dấu trị tuyệt đối của P.
Với \(x\le-\frac{1}{3}\) do x nguyên nên ta có thể coi như \(x\le-1\)
Với \(x\le-1\Rightarrow P=-x-\frac{3x+1}{2}=-\frac{5x+1}{2}\ge2.\)
Khi đó minP = 2 khi x = -1, y = -1.
Với \(-\frac{1}{3}< x< 0\) không có giá trị x nguyên thỏa mãn.
Với \(x\ge0,\) do \(x=2k+1\Rightarrow\) ta có thể coi \(x\ge1\)
Với \(x\ge1\Rightarrow P=x+\frac{3x+1}{2}=\frac{5x+1}{2}\ge3\)
Vậy \(minP=3\) khi \(x=1\Rightarrow y=2\)
Tóm lại \(minP=2\) khi x = -1, y = -1.
(3x-1)2+|x-2y| = 0 nên (3x-1)2 và |x-2y| đối nhau mà 2 số đều không âm nên chỉ có thể (3x-1)2 = |x-2y| = 0
=> 3x-1 = 0 ; x-2y = 0 => 3x = 1 => x = 1/3 = 2y => y = 1/6 => 3x+12y = 1 + 12.1/6 = 1 + 2 = 3
2) A=x(x+2y)-2y(-x-2y) =x(x+2y) +2y(x+2y) =(x+2y)(x+2y) =(x+2y)^2
Thay x=7-2y ta có
A= (7-2y+2y)^2=49
1) very simple
n+4 và 2n đều là số chính phương nên: n+4=2n suy ra 4=2n-n nên n=4
3) Nhân cả ba vế với nhau ta có (abc)^2=36abc nên abc=(+_ 6) sau đo ngân chế tự tính nhé
Mà này cô biết điểm thi vào cấp 3 rồi đấy có muốn biết không