K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2015

1) Ta có: 2x2 + 2x + 1 = 0

<=> x2 + (x2 + 2x + 1) = 0

<=> x2 + (x+ 1)2 = 0 <=> x = x+ 1 = 0       (Vì x2 \(\ge\) 0 và (x+ 1)2 \(\ge\) 0 với mọi x)

x = x+ 1 => 0 = 1 Vô lý

Vậy đa thức đã cho ko có nghiệm

2) a) x3-2x2-5x+6  = 0

=> x3 - x2 - x2 + x - 6x + 6 = 0

=> ( x3 - x2) - (x2 - x)  - (6x - 6) = 0 => x2.(x- 1) - x(x - 1) - 6(x - 1) = 0

=> (x - 1).(x2 - x - 6) = 0 => (x -1).(x2 - 3x + 2x - 6) = 0

=> (x- 1).[x(x - 3) + 2.(x - 3)] = 0 => (x - 1).(x + 2).(x - 3) = 0 

=> x- 1= 0 hoặc x + 2 = 0 hoặc x - 3 = 0

=> x = 1 hoặc x = -2 hoặc x = 3

Đa thức đã cho có 3 nghiệm là: 1; -2 ; 3

b) x3 + 3x2 - 6x - 8 = 0

=>  x3 +  x2 + 2x2 + 2x - 8x - 8 = 0

=> x2.(x + 1) + 2x.(x + 1) - 8 (x + 1) = 0

=> (x+ 1). [x2 + 2x - 8] = 0

=> (x+1).[x2 + 4x - 2x - 8] = 0 => (x +1).[x.(x+4) - 2.(x+4)] = 0

=> (x +1). (x -2). (x+4) = 0 

=> x+ 1 hoặc x - 2 = 0 hoặc x+ 4 = 0

=> x = -1 hoặc x = 2 hoặc x = -4

Đa thức đã cho có 3 nghiệm là -1; 2; -4

 

6 tháng 12 2016

x+(-2x)=(-70+(-3)

a: A=x^3-2x^2+5x-1

B=x^3-3x^2+3x-2

P=A+B=2x^3-5x^2+8x-3

Q=A-B=x^2+2x+1

b: Bậc của P lớn hơn Q

c: Q(-1)=(-1)^2+2*(-1)+1=0

=>x=-1 là nghiệm của Q

24 tháng 3 2023

Cảm ơn  bạn ạ

a: \(A=-5x^3+9x^3-2x^2-2x^2+x-x+1\)

\(=4x^3-4x^2+1\)

\(B=-4x^3+2x^3-2x^2+2x^2+6x-9x-2\)

\(=-2x^3-3x-2\)

\(C=x^3-6x^2+2x-4\)

b: \(A\left(x\right)+B\left(x\right)-C\left(x\right)\)

\(=4x^3-4x^2+1-2x^3-3x-2+x^3-6x^2+2x-4\)

\(=3x^3-10x^2-x-4\)

22 tháng 1 2017

Ta có f(x) + g(x) = 4x - 1. Khi đó nghiệm của đa thức tổng là x = 1/4. Chọn C

15 tháng 4

x=1/4 chon C

 

22 tháng 8 2019

a) ta có: 

+) x = 5 => f(5) = 52 - 6.5 + 5 = 25 - 30 + 5 = 0

                        => x = 5 là nghiệm của f(x)

+) x = 3 => f(3) = 32 - 6.3 + 5 = 9 - 18 + 5 = -4

                => x = 3 ko là nghiệm của f(x)

+) x = 1 =. f(1) = 12 - 6.1 + 5 = 1 - 6 + 5 = 0

                => x = 1 là nghiệm của f(x)

+) x = 0 => f(0) = 02 - 6.0 + 5 = 5

          => x = 5 ko là nghiệm của f(x)

b) Tập hợp S = {5; -1} 

c) Ta có : x4 \(\ge\)0 ; 1/5x2 \(\ge\)0 ; 2012 > 0

=> x4 + 1/5x2 + 2012 > 0

=> đa thức h(x) ko có nghiệm

22 tháng 8 2019

\(a.\)Thay lần lượt các giá trị của \(x\)trong tập hợp số \(\left\{5;3;-1;0\right\}\)vào đa thức \(f\left(x\right)\)như bn Edogawa Conan nha !

Ta thấy \(f\left(5\right)=5^2-6.5+5=0\)nên \(x=5\)là 1 ngiệm của \(f\left(x\right)\)

\(b.\)Ta có: \(f\left(x\right)=x^2-x-5x+5=x\left(x-1\right)-5\left(x-1\right)=\left(x-1\right)\left(x-5\right)\)

                             \(f\left(x\right)=0\Leftrightarrow\cdot x-1\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\)

\(c.\)Xét đa thức \(h\left(x\right)=x^4+\frac{1}{5}x^2+2012\)

Do \(x^4\ge0\)và \(\frac{1}{5}x^2\ge0\)với mọi \(x\)nên \(h\left(x\right)>0\)với mọi \(x\)

Vậy \(h\left(x\right)\ne0\)với mọi \(x\)Do đó đa thức \(h\left(x\right)\)không có nghiệm

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 1:
1. 

$6x^3-2x^2=0$

$2x^2(3x-1)=0$

$\Rightarrow 2x^2=0$ hoặc $3x-1=0$

$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức

2.

$|3x+7|\geq 0$

$|2x^2-2|\geq 0$

Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$

$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý) 

Vậy đa thức vô nghiệm.

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 2:

1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$

Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$

Do đó đa thức vô nghiệm

2.

$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$

$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$

Vậy đa thức khác 0 với mọi $x$

Do đó đa thức không có nghiệm.

a: \(f\left(-5\right)=\left(-5\right)^2+4\cdot\left(-5\right)-5=0\)

=>x=-5 là nghiệm của f(x)

b: S={-5;1}

Đặt 2x^2-x+1=0

Δ=(-1)^2-4*2*1=1-8=-7<0

=>Đa thức vô nghiệm

4 tháng 6 2018

h(x)=5x+1

nghiệm_của_đa_thức_h(x)_là_-1/5