Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(x^2\ge0\forall x\in Q\)
\(y^2\ge0\forall x\in Q\)
\(\Rightarrow x^2+y^2+2014\ge2014\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là 2014, xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
b, Ta có: \(\left(x+30\right)^2\ge0\forall x\in Q\)
\(\left(y-4\right)^2\ge0\forall x\in Q\)
\(\Rightarrow\left(x+30\right)^2+\left(y-4\right)^2+17\ge17\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là 17, xảy ra khi \(\left\{{}\begin{matrix}\left(x+30\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-30\\y=4\end{matrix}\right.\)
c, Ta có: \(\left(y-9\right)^2\ge0\forall x\in Q\)
\(\left|x-3\right|\ge0\forall x\in Q\)
\(\Rightarrow\left(y-9\right)^2+\left|x-3\right|^2-1\ge-1\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là -1 xảy ra khi \(\left\{{}\begin{matrix}\left(y-9\right)^2=0\\\left|x-3\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x=3\end{matrix}\right.\)
b) Ta có: \(5-\left|3x-1\right|=3\)
\(\Leftrightarrow\left|3x-1\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=-2\\3x-1=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\3x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=1\end{matrix}\right.\)
Vậy: \(x\in\left\{-\frac{1}{3};1\right\}\)
c) Ta có: \(\left(1-2x\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}1-2x=3\\1-2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-2\\2x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;2\right\}\)
a/ A = x2 + (y - 1)4 - 3
Do x2\(\ge\) 0 và (y - 1)4\(\ge\)0
=> A = x2 + (y - 1)4 - 3 \(\ge\)-3
Đẳng thức xảy ra khi: x = 0 và y - 1 = 0 => x = 0 và y = 1
Vậy GTNN của A là -3 khi x = 0 và y = 1
b/ B = 3(x2 - 7) + 2016 = 3x2 - 21 + 2016 = 3x2 + 1995
Mà: 3x2\(\ge\)0 => B = 3x2 + 1995 \(\ge\)1995
Đẳng thức xảy ra khi: 3x2 = 0 => x = 0
Vậy GTNN của B là 1995 khi x = 0
c/ C = (2x + 3)(x - 5) - x(x - 7) = 2x2 - 10x + 3x -15 - (x2 - 7x) = 2x2 - 7x -15 - x2 + 7x = (2x2 -x2) + (-7x + 7x) - 15 = x2 -15
Mà: x2\(\ge\)0 => x2 - 15\(\ge\)-15
Đẳng thức xảy ra khi: x2 = 0 => x = 0
Vậy GTNN cảu C là -15 khi x = 0
1. a) Ta có:
|x-3| > 0
=> |x-3| + 2 > 2
=> (|x-3| + 2)2 > 22 = 4
|y+3| > 0
=> P = (|x-3|+2)2 + |y+3| + 2007 > 4 + 0 + 2007 = 2011
=> GTNN của P là 2011
<=> x-3 = y+3 = 0
<=> x = 3; y = -3.