K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

Đề hình như phải là câu a tìm Max b tìm Min và c Tìm max nhé

a,

Ta có:

\(\sqrt{2x+3}\ge0\Rightarrow13-\sqrt{2x+3}\le13\)

MaxA=13 <=> 2x+3=0 => x=-3/2

Vậy...

b,

Ta có:

\(5\sqrt{x^2+25}\ge0\Rightarrow83+5\sqrt{x^2+25}\ge83\)

Min B= 83 <=> x^2+25=0 => x^2=-25

=> Vô nghiệm

c,

Ta có:

\(\sqrt{x^2-36}\ge0\Rightarrow57-\sqrt{x^2-36}\le57\)

Min C= 57 <=> x^2-36=0

=> x^2=36

=>....

a) Ta có: \(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow-3\left(2x-1\right)^2\le0\forall x\)

\(\Rightarrow-3\left(2x-1\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi 2x-1=0

\(\Leftrightarrow2x=1\)

hay \(x=\dfrac{1}{2}\)

Vậy: Giá trị lớn nhất của biểu thức \(A=5-3\left(2x-1\right)^2\) là 5 khi \(x=\dfrac{1}{2}\)

19 tháng 3 2017

\(a^2+2ab+b^2=\left(a+b\right)^2\ge0\forall a,b\)

\(a^2-2ab+b^2=\left(a-b\right)^2\ge0\forall a,b\)

\(A^{2n}\ge0\forall A\)

\(-A^{2n}\le0\forall A\)

19 tháng 3 2017

\(\left|A\right|\ge0\forall A\)

\(-\left|A\right|\le0\forall A\)

\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)

\(\left|A\right|-\left|B\right|\le\left|A-B\right|\)

5 tháng 3 2019

a)\(MaxA=\sqrt{3}\)<=>Dấu ''='' xảy ra

<=>x=2

b) Min A =2019<=>Dấu ''='' xảy ra

<=>2x-5=0

<=>x=5/2

5 tháng 3 2019

nnznznxk

11 tháng 7 2018

a) ĐKXĐ: \(x\ge-\sqrt{2}\)

Ta có: \(\sqrt{x+\sqrt{2}}\ge0\Rightarrow-\sqrt{x+\sqrt{2}}\le0\)

\(\Rightarrow A=1-\sqrt{x+\sqrt{2}}\le1\)

Vậy: GTLN của A là 1 khi \(\sqrt{x+\sqrt{2}}=0\Leftrightarrow x=-\sqrt{2}\)

b) ĐKXĐ: \(x\ge-2\)

Ta có: \(\sqrt{x+2}\ge0\)

\(\Rightarrow B=\sqrt{x+2}+\dfrac{1}{5}\ge\dfrac{1}{5}\)

Vậy: GTNN của B là \(\dfrac{1}{5}\)khi \(\sqrt{x+2}=0\Leftrightarrow x=-2\)

11 tháng 7 2018

Không có gì, nếu bài làm có vấn đề gì thì bạn góp ý cho mình nha!

22 tháng 10 2017

1)\(y=\dfrac{5}{7+\sqrt{x}}\le\dfrac{5}{7}\)

Dấu "=" xảy ra khi:

\(\sqrt{x}=0\Leftrightarrow x=0\)

b) \(y=\dfrac{\sqrt{x+1}+13}{\sqrt{x+1}+4}\le\dfrac{13}{4}\)

Dấu "=" xảy ra khi: \(\sqrt{x+1}=0\Leftrightarrow x=-1\)

2)\(\sqrt{x-1}+\sqrt{2x-2}+\sqrt{3x-3}+15\ge15\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{2x-2}=0\\\sqrt{3x-3}=0\end{matrix}\right.\Leftrightarrow x=1\left(tm\right)\)

Giúp mình nhanh nhé, mai cô kt r

Ai bik ko trả lời với ạ