Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề hình như phải là câu a tìm Max b tìm Min và c Tìm max nhé
a,
Ta có:
\(\sqrt{2x+3}\ge0\Rightarrow13-\sqrt{2x+3}\le13\)
MaxA=13 <=> 2x+3=0 => x=-3/2
Vậy...
b,
Ta có:
\(5\sqrt{x^2+25}\ge0\Rightarrow83+5\sqrt{x^2+25}\ge83\)
Min B= 83 <=> x^2+25=0 => x^2=-25
=> Vô nghiệm
c,
Ta có:
\(\sqrt{x^2-36}\ge0\Rightarrow57-\sqrt{x^2-36}\le57\)
Min C= 57 <=> x^2-36=0
=> x^2=36
=>....
a) Ta có: \(\left(2x-1\right)^2\ge0\forall x\)
\(\Rightarrow-3\left(2x-1\right)^2\le0\forall x\)
\(\Rightarrow-3\left(2x-1\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi 2x-1=0
\(\Leftrightarrow2x=1\)
hay \(x=\dfrac{1}{2}\)
Vậy: Giá trị lớn nhất của biểu thức \(A=5-3\left(2x-1\right)^2\) là 5 khi \(x=\dfrac{1}{2}\)
\(a^2+2ab+b^2=\left(a+b\right)^2\ge0\forall a,b\)
\(a^2-2ab+b^2=\left(a-b\right)^2\ge0\forall a,b\)
\(A^{2n}\ge0\forall A\)
\(-A^{2n}\le0\forall A\)
\(\left|A\right|\ge0\forall A\)
\(-\left|A\right|\le0\forall A\)
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
\(\left|A\right|-\left|B\right|\le\left|A-B\right|\)
a)\(MaxA=\sqrt{3}\)<=>Dấu ''='' xảy ra
<=>x=2
b) Min A =2019<=>Dấu ''='' xảy ra
<=>2x-5=0
<=>x=5/2
a) ĐKXĐ: \(x\ge-\sqrt{2}\)
Ta có: \(\sqrt{x+\sqrt{2}}\ge0\Rightarrow-\sqrt{x+\sqrt{2}}\le0\)
\(\Rightarrow A=1-\sqrt{x+\sqrt{2}}\le1\)
Vậy: GTLN của A là 1 khi \(\sqrt{x+\sqrt{2}}=0\Leftrightarrow x=-\sqrt{2}\)
b) ĐKXĐ: \(x\ge-2\)
Ta có: \(\sqrt{x+2}\ge0\)
\(\Rightarrow B=\sqrt{x+2}+\dfrac{1}{5}\ge\dfrac{1}{5}\)
Vậy: GTNN của B là \(\dfrac{1}{5}\)khi \(\sqrt{x+2}=0\Leftrightarrow x=-2\)
Không có gì, nếu bài làm có vấn đề gì thì bạn góp ý cho mình nha!
1)\(y=\dfrac{5}{7+\sqrt{x}}\le\dfrac{5}{7}\)
Dấu "=" xảy ra khi:
\(\sqrt{x}=0\Leftrightarrow x=0\)
b) \(y=\dfrac{\sqrt{x+1}+13}{\sqrt{x+1}+4}\le\dfrac{13}{4}\)
Dấu "=" xảy ra khi: \(\sqrt{x+1}=0\Leftrightarrow x=-1\)
2)\(\sqrt{x-1}+\sqrt{2x-2}+\sqrt{3x-3}+15\ge15\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{2x-2}=0\\\sqrt{3x-3}=0\end{matrix}\right.\Leftrightarrow x=1\left(tm\right)\)