Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}=\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\\ =\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\\ =\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(-\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(-\dfrac{1}{5}+\dfrac{1}{5}\right)+\left(-\dfrac{1}{6}+\dfrac{1}{6}\right)+\left(-\dfrac{1}{7}+\dfrac{1}{7}\right)+\left(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{8}\right)\\ =\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{8}=1-\dfrac{1}{8}=\dfrac{8-1}{8}=\dfrac{7}{8}\)
`@` `\text {Ans}`
`\downarrow`
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)
`=`\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+\dfrac{1}{6\times7}+\dfrac{1}{7\times8}\)
`=`\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
`=`\(1-\dfrac{1}{8}\)
`=`\(\dfrac{7}{8}\)
1/2+1/6+1/12+1/20+...+1/380
=1/1.2+ 1/2.3+ 1/3.4+ 1/4.5+...+ 1/19.20
= 1/1-1/2+ 1/2-1/3+ 1/3-1/4+ 1/4-1/5+...+1/19-1/20
=1-1/29
=29/29-1/29
= 28/29
\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{110}\)
= \(\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{10\times11}\)
= \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{10}-\dfrac{1}{11}\)
= \(\dfrac{1}{3}-\dfrac{1}{11}=\dfrac{8}{33}\)
\(a.32,5-3\cdot0,87=32,5-2,61=29,89\)
\(8,5\cdot\left(1\dfrac{1}{2}+\dfrac{4}{4}\right):5=8,5\cdot\left(\dfrac{3}{2}+\dfrac{4}{4}\right):5\\ =8,5\cdot\left(\dfrac{6}{4}+\dfrac{4}{4}\right):5\\ =8,5\cdot\dfrac{10}{4}:5\\ =\dfrac{85}{4}:5\\ =\dfrac{17}{4}\)
\(b.30,96-6,45+14,4:3=30,96-6,45+4,8\\ =29,31\)
\(\dfrac{2}{5}\cdot\left(\dfrac{4}{5}-\dfrac{1}{2}\right)=\dfrac{2}{5}\cdot\left(\dfrac{8}{10}-\dfrac{5}{10}\right)\\ =\dfrac{2}{5}\cdot\dfrac{3}{10}=\dfrac{3}{25}\)
bài 2
\(a.2,5\cdot12,5\cdot8\cdot0,4=\left(2,5\cdot0,4\right)\left(12,5\cdot8\right)\\ =1\cdot100=100\)
b,\(\dfrac{12}{15}\cdot\dfrac{5}{6}\cdot\dfrac{3}{20}\cdot\dfrac{32}{5}=\dfrac{12\cdot5\cdot3\cdot32}{15\cdot6\cdot20\cdot5}\\ =\dfrac{3\cdot4\cdot5\cdot3\cdot4\cdot8}{3\cdot5\cdot2\cdot3\cdot5\cdot4\cdot5}=\dfrac{16}{25}\)
Bài 1:
a) \(32.5-3\cdot0.87=32.5-2.61=29.89\)
\(8.5\cdot\left(1\dfrac{1}{2}+\dfrac{4}{4}\right):5=8.5\cdot\dfrac{5}{2}:5=\dfrac{17}{2}\cdot\dfrac{5}{2}:5=\dfrac{85}{4}\cdot\dfrac{1}{5}=\dfrac{17}{4}\)
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\)+...+ \(\dfrac{1}{812}\) + \(\dfrac{1}{870}\)
A = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\)+...+ \(\dfrac{1}{28\times29}\)+ \(\dfrac{1}{29\times30}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) +...+\(\dfrac{1}{28}\)-\(\dfrac{1}{29}\)+ \(\dfrac{1}{29}\) - \(\dfrac{1}{30}\)
A = 1 - \(\dfrac{1}{30}\)
A = \(\dfrac{29}{30}\)
29/30 nha