Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiêu dài, chiều rộng lần lượtlà a,b
Theo đề, ta có: ab=720 và (a+6)(b-4)=ab
=>ab=720 và ab-4a+6b-24=ab
=>-4a+6b=24 và ab=720
=>2a-3b=-12 và ab=720
=>3b=2a+12
=>b=(2a+12)/3
ab=720
=>a*(2a+12)/3=720
=>(2a^2+12a)=2160
=>a=30
=>b=24
Gọi chiều dài HCN là x (x>0,m)
Ta có chiều rộng HCN là \(\frac{720}{x}\left(m\right)\)
Theo bài ra ta có phương trình sau
\(\left(x+1\right)\left(\frac{720}{x}-6\right)=720\Leftrightarrow6x^2+60x-7200=0\Leftrightarrow x^2+10x-1200=0\)
\(\Delta=10^2-4.1.\left(-1200\right)=100+4800=4900>0\)
Tự thực hiện tiếp ....
Gọi chiều dài hình chữ nhật là x thì chiều rộng là \(\frac{720}{x}\left(x>0\right)\left(m\right)\)
\(\Leftrightarrow720-6x+\frac{7200}{x}-60=720\)
\(\Leftrightarrow6x^2-7200+60x=0\)
\(\Leftrightarrow x^2+10x-1200=0\)
\(\Leftrightarrow x^2+40x-30x-1200=0\)
\(\Leftrightarrow x\left(x+40\right)-30\left(x+40\right)=0\)
\(\Leftrightarrow\left(x+40\right)\left(x-30\right)=0\)
\(\Leftrightarrow x=30\)vì \(x>0\)
Vậy chiều dài là\(30m\), chiều rộng là \(\frac{720}{30}=24m\)
gọi x(m) là chiều dài( dk: x>=0;y>=6)
720/x (m) là chiều rộng
nếu tăng chiều dài 10m thì chiều dài mới là x+10
nếu giảm chiều rộng 6m thì chiều rộng mới là 720/x-6
vì khi thay đôi cd, cr diện tích vẫn giữ nguyên nên ta có pt
(x+10)(720/x-6)=720
<=> 720+7200/x -60-6x=720
<=> 6x2 +60x-7200=0
giải pt ta được x1=30 (TMĐK)
x2=-40 (TMĐK)
vậy chiều dài là 30m
chiều rộng là 720/30=24m
Cho mảnh đất hình chữ nhật có diện tích 360m2. Nếu tăng chiều rộng thêm 2m và giảm chiều dài 6m thì diện tích mảnh đất không đổi. Tính các kích thước của mảnh đất lúc đầu
trả lời
gọi chiều dài là a ( a>0)
chiều rộng là b ( b>0)
diện tích ban đầu là
ab =360 (1)
tăng chiều rộng thêm 2m và giảm chiều dài 6m thì diện tích mảnh đất không đổi
=> (a-6)(b+2) =ab
<=> ab + 2a -6b -12 =ab
<=> 2a-6b=12
<=> a-3b=6 (2)
giải hệ pt gồm 1 và 2
=> a= 36 và b=10
vậy chieu dài là 36 , rộng : 10
Gọi chiều dài,chiều rộng của mảnh vườn lần lượt là a,b(m) \(\left(a>b>0\right)\)
Theo đề: \(\left\{{}\begin{matrix}ab=80\\\left(a-2\right)\left(b+3\right)=80+32=112\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}ab=80\left(1\right)\\ab+3a-2b-6=112\left(2\right)\end{matrix}\right.\)
Thế (1) vào (2): \(\Rightarrow3a-2b=38\Rightarrow3a=2b+38\)
Ta có: \(3ab=3.80=240\Rightarrow b\left(2b+38\right)=240\Rightarrow2b^2+38b-240=0\)
\(\Rightarrow\left(b-5\right)\left(b+24\right)=0\) mà \(b>0\Rightarrow b=5\Rightarrow a=16\)
Bài giải
Gọi chiều dài là x(m)
Gọi chiều rộng là y(m)
Diện tích mảnh vườn ban đầu là: x.y=80 (m2) (1)
Diện tích mảnh vườn khi thay đổi chiều dài, chiều rộng là: (x-2).(y+3) = 112 (m2) (2)
từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}xy=80\\\left(x-2\right)\left(y+3\right)=112\end{matrix}\right.\)
từ (1) => x= \(\dfrac{80}{y}\)
Thay x= \(\dfrac{80}{y}\) vào (2) => x=16 ; y = 5
Vậy...............................
Gọi chiều rộng của mảnh vườn ban đầu là x>0 (m)
Chiều dài ban đầu: \(x+2\) (m)
Sau khi tăng kích thước thì chiều rộng là: \(x+3\) (m)
Chiều dài khu vườn sau khi giảm: \(x+1\) (m)
Theo bài ra ta có pt:
\(\left(x+3\right)\left(x+1\right)=99\)
\(\Leftrightarrow x^2+4x-96=0\Rightarrow\left[{}\begin{matrix}x=-12\left(loại\right)\\x=8\end{matrix}\right.\)
Diện tích khu vườn ban đầu: \(8.\left(8+2\right)=80\left(m^2\right)\)
Gọi chiều rộng, chiều dài lần lượt là a,b
Theo đề, ta có: ab=360 và (a+2)(b-6)=ab
=>-6a+2b=12 và ab=360
=>3a-b=6 và ab=360
=>b=3a-6 và a(3a-6)=360
=>3a^2-6a-360=0 và b=3a-6
=>a=12 và b=30
=>C=(12+30)*2=84m
Gọi chiều dài mảnh vườn là x ( x > 0 )
=> Chiều rộng mảnh vườn = 720/x ( m )
Tăng chiều dài 6m và giảm chiều rộng 4m
=> Chiều dài mới = ( x + 6 )m và chiều rộng mới = ( 720/x - 4 )m
Khi đó diện tích mảnh vườn không đổi
=> Ta có phương trình : \(x\cdot\frac{720}{x}=\left(x+6\right)\left(\frac{720}{x}-4\right)\)( bạn tự giải nhé )
Giải phương trình thu được 2 nghiệm x1 = -36 ( loại ) và x2 = 30 ( nhận )
=> Chiều dài mảnh vườn = 30m
Chiều rộng mảnh vườn = 720/30 = 24m
đề thiếu nha bạn
pải nói là hình chữ nhật hay hình j đó chứ ko ko vậy sao làm