K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 10 2021

Lời giải:
$\cos 2x+\cos x+1=0$

$\Leftrightarrow 2\cos ^2x-1+\cos x+1=0$

$\Leftrightarrow 2\cos ^2x+\cos x=0$

$\Leftrightarrow \cos x(2\cos x+1)=0$

$\Leftrightarrow \cos x=0$ hoặc $\cos x=-\frac{1}{2}$

Nếu $\cos x=0$

$\Rightarrow x=\frac{\pi}{2}+k\pi$ với $k$ nguyên.

Nếu $\cos x=-\frac{1}{2}$

$\Leftrightarrow x=\frac{2}{3}\pi +2k\pi$ hoặc $x=-\frac{2}{3}\pi +2k\pi$ với $k$ nguyên bất kỳ.

NV
6 tháng 10 2021

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+k\pi\\x\ne-\dfrac{\pi}{4}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{\left(1+2cos^2x-1+2sinx.cosx\right)cosx+cos^2x-sin^2x}{1+\dfrac{sinx}{cosx}}=cosx\)

\(\Leftrightarrow\dfrac{2cos^2x\left(sinx+cosx\right)+\left(sinx+cosx\right)\left(cosx-sinx\right)}{\dfrac{sinx+cosx}{cosx}}=cosx\)

\(\Leftrightarrow\dfrac{cosx\left(sinx+cosx\right)\left(2cos^2x+cosx-sinx\right)}{sinx+cosx}=cosx\)

\(\Rightarrow2cos^2x+cosx-sinx=1\)

\(\Rightarrow cosx-sinx-cos2x=0\)

\(\Rightarrow cosx-sinx-\left(cos^2x-sin^2x\right)=0\)

\(\Rightarrow cosx-sinx-\left(cosx-sinx\right)\left(cosx+sinx\right)=0\)

\(\Rightarrow\left(cosx-sinx\right)\left(1-sinx-cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=cosx\\sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\) \(\Rightarrow x=\dfrac{\pi}{4}\)

Có 1 nghiệm trên khoảng đã cho

NV
3 tháng 10 2021

\(2\sqrt{2}sinx.cosx+2\sqrt{2}cos^2x=3+cos2x\)

\(\Leftrightarrow\sqrt{2}sin2x+\sqrt{2}\left(1+cos2x\right)=3+cos2x\)

\(\Leftrightarrow\sqrt{2}sin2x+\left(\sqrt{2}-1\right)cos2x=3-\sqrt{2}\)

Do \(\left(\sqrt{2}\right)^2+\left(\sqrt{2}-1\right)^2< \left(3-\sqrt{2}\right)^2\) nên pt đã cho vô nghiệm

NV
3 tháng 10 2021

ĐKXĐ: \(sin2x\ne-\dfrac{1}{2}\)

\(5\left(sinx+\dfrac{3sinx-4sin^3x+4cos^3x-3cosx}{1+2sin2x}\right)=cos2x+3\)

\(\Leftrightarrow5\left(sinx+\dfrac{3\left(sinx-cosx\right)-4\left(sinx-cosx\right)\left(1+\dfrac{1}{2}sin2x\right)}{1+2sin2x}\right)=cos2x+3\)

\(\Leftrightarrow5\left(sinx+\dfrac{\left(sinx-cosx\right)\left(-1-2sin2x\right)}{1+2sin2x}\right)=cos2x+3\)

\(\Leftrightarrow5\left(sinx+cosx-sinx\right)=cos2x+3\)

\(\Leftrightarrow5cosx=2cos^2x-1+3\)

\(\Leftrightarrow...\)

28 tháng 11 2021

\(\Leftrightarrow\left(b-2\sqrt{2}\right)\left(b+2\sqrt{2}\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}b\ge2\sqrt{2}\\b\le-2\sqrt{2}\end{matrix}\right.\)

14 tháng 8 2016

1 + sinx + cosx + sin2x + cos2x = 0 
sinx + cosx + 1 + 2sinxcosx + cos²x - sin²x = 0 
sinx + cosx + (1 + 2sinxcosx) + (cos²x - sin²x) = 0 
(sinx + cosx) + (sinx + cosx)² + (cosx + sinx)(cosx - sinx) = 0 
(sinx + cosx)(1 + sinx + cosx + cosx - sinx) = 0 
(sinx + cosx)(1 + 2cosx) = 0 
sinx + cosx = 0 hoặc 1 + 2cosx = 0 

(a) sinx + cosx = 0 ⇒ tanx + 1 = 0 ⇒ tanx = -1 ⇒ x = 3π/4 + kπ, (k ∈ Z) 
(b) 1 + 2cosx = 0 ⇒ cosx = -1/2 = cos(2π/3) ⇒ x = ±2π/3 + k 2π, (k ∈ Z)

17 tháng 9 2019

1.

        \(\cos2x+\sin\left(x+\frac{pi}{4}\right)=0\)

\(\Leftrightarrow\sin\left(x+\frac{pi}{4}\right)=-\cos2x\)

\(\Leftrightarrow\sin\left(x+\frac{pi}{4}\right)=\sin\left(2x-\frac{pi}{2}\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{pi}{4}=2x-\frac{pi}{2}+k2pi\\x+\frac{pi}{4}=pi-2x+\frac{pi}{2}+k2pi\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-x=-\frac{3}{4}pi+k2pi\\3x=+\frac{5}{4}pi+k2pi\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}pi+k2pi\\x=\frac{5}{12}pi+k\frac{2}{3}pi\end{cases}}\)

2.

\(\sin\left(3x-\frac{5pi}{6}\right)+\cos\left(3x+\frac{3pi}{6}\right)=0\)

\(\Leftrightarrow\sin\left(3x-\frac{5pi}{6}\right)=-\cos\left(3x+\frac{3pi}{6}\right)\)

\(\Leftrightarrow\sin\left(3x-\frac{5pi}{6}\right)=\sin\left(3x+\frac{3pi}{6}-\frac{pi}{2}\right)\)

\(\Leftrightarrow\orbr{\begin{cases}3x-\frac{5pi}{6}=3x+\frac{3pi}{6}-\frac{pi}{2}+k2pi\\3x-\frac{5pi}{6}=pi-3x-\frac{3pi}{6}+\frac{pi}{2}+k2pi\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}0x=\frac{5pi}{6}+k2pi\left(VN\right)\\6x=\frac{11pi}{6}+k2pi\end{cases}}\)

\(\Leftrightarrow x=\frac{11pi}{36}+k\frac{1}{3}pi\)

NV
31 tháng 7 2020

c/

\(\Leftrightarrow1+2cos^2x-1+cosx=0\)

\(\Leftrightarrow2cos^2x-cosx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

d/

Đặt \(\left\{{}\begin{matrix}\left|sinx\right|=a\ge0\\cosx=b\end{matrix}\right.\) ta được hệ:

\(\left\{{}\begin{matrix}a+3b=2\\a^2+b^2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2-3b\\a^2+b^2=1\end{matrix}\right.\)

\(\Rightarrow\left(2-3b\right)^2+b^2-1=0\)

\(\Rightarrow10b^2-12b+3=0\Rightarrow\left[{}\begin{matrix}b=\frac{6+\sqrt{6}}{10}\Rightarrow a=\frac{2-3\sqrt{6}}{10}\left(l\right)\\b=\frac{6-\sqrt{6}}{10}\Rightarrow a=\frac{2+3\sqrt{6}}{10}\end{matrix}\right.\)

\(\Rightarrow cosx=\frac{6-\sqrt{6}}{10}\)

\(\Rightarrow x=\pm arccos\left(\frac{6-\sqrt{6}}{10}\right)+k2\pi\)

NV
31 tháng 7 2020

b/

\(cos\left(8sinx\right)=1\)

\(\Leftrightarrow8sinx=k2\pi\)

\(\Leftrightarrow sinx=\frac{k\pi}{4}\)

Do \(-1\le sinx\le1\Rightarrow-1\le\frac{k\pi}{4}\le1\)

\(\Rightarrow k=\left\{-1;0;1\right\}\)

\(\Rightarrow\left[{}\begin{matrix}sinx=-\frac{\pi}{4}\\sinx=0\\sinx=\frac{\pi}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pm arcsin\left(\frac{\pi}{4}\right)+k2\pi\\x=\pi\pm arcsin\left(\frac{\pi}{4}\right)+k2\pi\\x=k\pi\end{matrix}\right.\)

28 tháng 5 2021

undefinedBạn tham khảo pt 1 hộ mình nha. Chúc bạn học tốt~

28 tháng 5 2021

Pt 1.undefined

Bạn tham khảo phương trình 1 hộ mình nha. Chúc bạn học tốt