Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Thay m = 1 ta đc
\(x^2-1=0\Leftrightarrow x=1;x=-1\)
b, \(\Delta'=\left(m-1\right)^2-\left(2m-3\right)=m^2-4m+4=\left(m-2\right)^2\)
Để pt có 2 nghiệm pb khi delta' > 0
\(m-2\ne0\Leftrightarrow m\ne2\)
c, để pt có 2 nghiệm trái dấu khi \(x_1x_2=2m-3< 0\Leftrightarrow m< \dfrac{3}{2}\)
d.
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=2m-3\end{matrix}\right.\)
Trừ vế cho vế:
\(\Rightarrow x_1+x_2-x_1x_2=1\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m
\(\Delta=m^2+12>0\) ; \(\forall m\)
\(\Rightarrow\) Khi \(n=0\) thì pt có nghiệm với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=n-3\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1^2-x_2^2=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\\left(x_1+x_2\right)\left(x_1-x_2\right)=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\x_1+x_2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=4\\x_2=3\end{matrix}\right.\)
Thế vào hệ thức Viet: \(\left\{{}\begin{matrix}4+3=-m\\4.3=n-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=-7\\n=15\end{matrix}\right.\)
a/ ĐKXĐ: \(x\ge1\)
\(x^2-2x+1+2\left(x-1\right)\sqrt{x-1}+x-1=4\)
\(\Leftrightarrow\left(x-1\right)^2+2\left(x-1\right)\sqrt{x-1}+x-1=4\)
\(\Leftrightarrow\left(x-1+\sqrt{x-1}\right)^2=4\)
\(\Leftrightarrow x-1+\sqrt{x-1}=2\) (do \(x-1+\sqrt{x-1}\ge0\) \(\forall x\ge1\))
\(\Leftrightarrow x-1+\sqrt{x-1}-2=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-1}=-2\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=2\)
b/ ĐKXĐ: \(x;y;z\ge0\)
Nhận thấy \(x=y=z=0\) là 1 nghiệm của pt đã cho
Với \(x;y;z\ne0\)
Áp dụng BĐT Cauchy: \(\sqrt{y}=\frac{4x}{4x+1}\le\frac{4x}{2\sqrt{4x}}=\sqrt{x}\Rightarrow y\le x\)
Hoàn toàn tương tự ta có \(\left\{{}\begin{matrix}z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}4x=1\\4y=1\\4z=1\\x=y=z\end{matrix}\right.\) \(\Rightarrow x=y=z=\frac{1}{4}\)
2/ \(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)>0\)
\(\Leftrightarrow-2m>0\Rightarrow m< 0\)
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=4-2m\\x_1x_2=m^2-2m+4\end{matrix}\right.\)
\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)
\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-2x_1x_2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)
\(\Leftrightarrow\frac{2}{2m^2-12m+8}-\frac{1}{m^2-2m+4}=\frac{1}{15m}\)
\(\Leftrightarrow\frac{m}{m^2-6m+4}-\frac{m}{m^2-2m+4}=\frac{1}{15}\)
Do \(m< 0\), chia cả tử và mẫu của các hạng tử vế trái cho m ta được:
\(\frac{1}{m+\frac{4}{m}-6}-\frac{1}{m+\frac{4}{m}-2}=\frac{1}{15}\)
Đặt \(m+\frac{4}{m}-6=a\Rightarrow m+\frac{4}{m}-2=a+4\) phương trình trở thành:
\(\frac{1}{a}-\frac{1}{a+4}=\frac{1}{15}\Leftrightarrow15\left(a+4\right)-15a=a\left(a+4\right)\)
\(\Leftrightarrow a^2+4a-60=0\Rightarrow\left[{}\begin{matrix}a=6\\a=-10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m+\frac{4}{m}-6=6\\m+\frac{4}{m}-6=-10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m^2-12m+4=0\\m^2+4m+4=0\end{matrix}\right.\)
a. thay m=-4 vào (1) ta có:
\(x^2-5x-6=0\)
Δ=b\(^2\)-4ac= (-5)\(^2\) - 4.1.(-6)= 25 + 24= 49 > 0
\(\sqrt{\Delta}=\sqrt{49}=7\)
x\(_1\)=\(\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{5+7}{2}\)=6
x\(_2\)=\(\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{5-7}{2}\)=-1
vậy khi x=-4 thì pt đã cho có 2 nghiệm x\(_1\)=6; x\(_2\)=-1
Để phương trình có 2 nghiệm phân biệt thì:
\(\Delta>0\)
<=> \(\left[-\left(2m+5\right)\right]^2-4.1.\left(2m+1\right)>0\)
\(\Leftrightarrow4m^2+12m+21>0\)
\(\Leftrightarrow4m^2+12m+9+12>0\)
<=> \(\left(2m+3\right)^2+12>0\)
Vì (2m+3)2 luôn lớn hơn hoặc bằng 0 với mọi m nên phương trình đã cho có nghiệm với mọi giá trị m.
Theo viét:
\(\left\{{}\begin{matrix}x_1+x_2=2m+5\\x_1x_2=2m+1\end{matrix}\right.\)
Theo đề:
\(M=\left|\sqrt{x_1}-\sqrt{x_2}\right|\) (điều kiện: \(x_1;x_2\ge0\))
=> \(M^2=x_1+x_2-2\sqrt{x_1x_2}=2m+5-2\sqrt{2m+1}\)
<=> \(M^2=\left(\sqrt{2m+1}\right)\left(\sqrt{2m+1}\right)-2\sqrt{\left(2m+1\right)}+4\)
<=> \(M^2=\left(\sqrt{2m+1}\right)\left(\sqrt{2m+1}-2\right)+4\)
<=> \(M^2=\left(\sqrt{2m+1}-1\right)^2+4\ge4\)
=> \(M\ge2\).
Dấu "=" xảy ra khi m = 0
Thế m = 0 vào phương trình ở đề được:
\(x^2-5x+1=0\)
Phương trình này có hai nghiệm dương -> thỏa mãn điều kiện.
Vậy min M = 2 và m = 0
☕T.Lam
- \(\Delta^'=m^2-\left(m-1\right)\left(m+1\right)=m^2-m^2+1=1>0\)vậy phương trình luôn có hai nghiệm với mọi \(m\ne1\)
- Theo viet ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m+1\end{cases}}\)\(\Rightarrow m+1=5\Rightarrow m=4\Rightarrow x_1+x_2=2m=2.4=8\)
- từ hệ thức viet ta khử m được hệ thức liên hệ giữa 2 nghiệm ko phụ thuộc m: thấy \(x_1+x_2-2x_2x_1=2m-2\left(m+1\right)=-2\)
- \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=-\frac{5}{2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=-\frac{5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-\frac{5}{2}\)\(\Leftrightarrow\frac{4m^2-2m-2}{m+1}=-\frac{5}{2}\Rightarrow8m^2-4m-4=-5m-5\left(m\ne-1\right)\)\(\Leftrightarrow8m^2+m+1=0\left(vn\right)\)không có giá trị nào của m thỏa mãn
1/ \(\Leftrightarrow\left\{{}\begin{matrix}2x^2-4xy+2x-4y+6=0\\y^2-x^2+2xy+2x-2=0\end{matrix}\right.\)
\(\Rightarrow x^2+y^2-2xy+4x-4y+4=0\)
\(\Leftrightarrow\left(x-y\right)^2+4\left(x-y\right)+4=0\)
\(\Leftrightarrow\left(x-y+2\right)^2=0\)
\(\Rightarrow y=x+2\)
Thay vào 1 trong 2 pt ban đầu là xong
2/ \(x^2-\left(y+2\right)x-6y^2+11y-3=0\)
\(\Delta=\left(y+2\right)^2-4\left(-6y^2+11y-3\right)\)
\(=25y^2-40y+16=\left(5y-4\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{y+2+5y-4}{2}\\x=\frac{y+2-5y+4}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3y-1\\x=-2y+3\end{matrix}\right.\)
Thay vào pt 2 là được
c/ \(S=\frac{2}{2\sqrt{1}}+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{2\sqrt{100}}\)
\(S< 1+\frac{2}{1+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{99}+\sqrt{100}}\)
\(S< 1+2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)
\(S< 1+2\left(\sqrt{100}-1\right)=19\)
\(S>\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{101}-\sqrt{100}}\)
\(S>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\right)\)
\(S>2\left(\sqrt{101}-1\right)>2\left(\sqrt{100}-1\right)=18\)
\(\Rightarrow18< S< 19\Rightarrow S\) nằm giữa 2 số tự nhiên liên tiếp nên S không phải số tự nhiên
Câu 1:
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\frac{1}{\sqrt{2x+1}}=u>0\\\frac{1}{\sqrt{y-2}}=v>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4u+3v=5\\u-2v=\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4u+3v=5\\4u-8v=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4u+3v=5\\11v=-1\end{matrix}\right.\)
\(\Rightarrow v=-\frac{1}{11}< 0\) (loại)
Vậy hệ đã cho vô nghiệm
Câu 2:
\(\Delta=\left(m+2\right)^2-8m=m^2-4m+4=\left(m-2\right)^2\ge0\) \(\forall m\)
Phương trình luôn có nghiệm với mọi m
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m-2\\x_1x_2=2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=-2m-4\\x_1x_2=2m\end{matrix}\right.\)
\(\Rightarrow2x_1+2x_2+x_1x_2=-4\)
Đây là biểu thức liên hệ 2 nghiệm ko phụ thuộc m