K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
29 tháng 7 2021

\(\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right)\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{2003}\right)\left(-1\frac{1}{2004}\right)\)

\(=-\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{2004}{2003}.\frac{2005}{2004}\)

\(=-\frac{3.4.5.....2004.2005}{2.3.4.....2003.2004}=\frac{-2005}{2}\)

15 tháng 9 2016

Bài 1

Nhân 2 vào biểu thức

Rút gọn và trừ đi 1 lần nó

còn lại \(\frac{1}{2}_{ }-\frac{1}{2^{10}}\)

15 tháng 9 2016

\(A=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)

 \(2A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

\(2A-A=\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

\(A=\frac{1}{2}-\frac{1}{2^{10}}\)

10 tháng 2 2017

(\(\frac{1}{4.9}+\frac{1}{9.14}+...+\frac{1}{44.49}\)).\(\frac{1-3-5-...-49}{89}\)

\(\frac{1}{5}.\left(\frac{5}{4.9}+\frac{5}{9.14}+...+\frac{5}{45.49}\right).\frac{1-3-5-...-49}{89}\)

\(=\frac{1}{5}.\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{44}-\frac{1}{49}\right).\frac{1-\frac{24.\left(49+3\right)}{2}}{89}\)

\(=\frac{1}{5}.\left(\frac{1}{4}-\frac{1}{49}\right).\left(-7\right)\)

\(=-\frac{9}{28}\)

Có chỗ ghi nhầm 44 thành 45. Tự sửa nhé

10 tháng 2 2017

Bài 2/ a/

|2x + 3| = x + 2

Điều kiện \(x\ge-2\)

Với x < - 1,5 thì ta có

- 2x - 3 = x + 2

<=> 3x = - 5

<=> \(x=-\frac{5}{3}\)

Với \(x\ge-1,5\)thì ta có

2x + 3 = x + 2

<=> x = - 1

1 tháng 1 2016

1/1+2+1/1+2+3+1/1+2+3+4+...+1/1+2+3+...+99+1/50

=1/(2+1).2:2+1/(3+1).3:2+1/(4+1).4:2+...+1/(99+1).99:2+1/50

=2/2.3+2/3.4+2/4.5+...+2/99.100+1/50

=2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100)+1/50

=2.49/100+1/50=49/50+1/50=1

tick nha ^^

1 tháng 1 2016

xin lõi bạn, tui không biết giải

11 tháng 9 2018

từ đề bài ta có \(\frac{A}{B}=\frac{\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)

\(\frac{A}{B}=\frac{\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{1}{9}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)

\(\frac{A}{B}=\frac{\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}+\frac{10}{10}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)

\(\frac{A}{B}=\frac{10\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)

\(\frac{A}{B}=10\)

13 tháng 8 2017

\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{102}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{101}{102}=\frac{1}{102}\)

\(B=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2016}}{\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}}=\frac{C}{D}\)

Ta có: \(D=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)(có 2015 số hạng)

          \(D=\left(\frac{2015}{1}+1\right)+\left(\frac{2014}{2}+1\right)+...+\left(\frac{1}{2015}+1\right)-2015\)

          \(D=2016+\frac{2016}{2}+\frac{2016}{3}+...+\frac{2016}{2015}-2015\)

          \(D=\frac{2016}{2}+\frac{2016}{3}+...+\frac{2016}{2015}+1=\frac{2016}{2}+\frac{2016}{3}+...+\frac{2016}{2015}+\frac{2016}{2016}\)

          \(D=2016\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}\right)=2016C\)

Vậy \(B=\frac{C}{D}=\frac{C}{2016C}=\frac{1}{2016}\)

14 tháng 8 2017

\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot....\cdot\left(1-\frac{1}{102}\right)\)

\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{101}{102}=\frac{1\cdot2\cdot3\cdot....\cdot101}{2\cdot3\cdot4\cdot....\cdot102}\)

\(A=\frac{1}{102}\)

\(B=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}{\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}}\)

\(B=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}{\left(\frac{2015}{1}+1\right)+\left(\frac{2014}{2}+1\right)+...+\left(\frac{1}{2015}+1\right)+1}\)

\(B=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}{\frac{2016}{1}+\frac{2016}{2}+...+\frac{2016}{2015}+\frac{2016}{2016}}\)

\(B=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}{2016\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)}=\frac{1}{2016}\)