Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ước chung của n+1 và n+2
Khi đó:n+1 chia hết cho d
n+2 chia hết cho d
=>(n+1)-(n+2) chia hết cho d
=>1 chia hết cho d
=>n+1 và n+2 là 2 số nguyên tố cùng nhau
Vậy phân số n+1/n+2 là phân số tối giản
Gọi \(ƯCLN\)\(\left(\frac{n+1}{n+2}\right)\)là \(d\left(d\in Z\right)\)
\(\Rightarrow n+1\)chia hết cho \(d\)
\(\Rightarrow n+2\)chia hết cho \(d\)
\(\Rightarrow1\left(n+1\right)\) chia hết cho \(d\)
\(\Rightarrow1\left(n+2\right)\) chia hết cho \(d\)
\(\Rightarrow1\left(n+1\right)-1\left(n+2\right)\)chia hết cho \(d\)
\(\Rightarrow-1\) chia hết cho \(d\)
\(\Rightarrow d\inƯ\left(-1\right)=\left\{-1;1\right\}\)
\(\Rightarrow d=\int^1_{-1}\)
Mà bạn này, lớp 5 đã học \(ƯCLN\) đâu nhỉ.
Gọi phân số cần tìm là \(\frac{a.}{b}\)
Theo bài ta có :
\(5\times\frac{a}{b}=\frac{a+b}{b}\Leftrightarrow\frac{5\times a}{b}=\frac{a+b}{b}\)
\(\Leftrightarrow5\times a=a+b\Leftrightarrow5\times a-a=b\)\(\Leftrightarrow\frac{a}{b}=\frac{1}{4}\)
Mà \(\frac{a}{b}\) tối giản
\(\Leftrightarrow\)Phân số cần tìm là \(\frac{1}{4}\)
Gọi UCLN(12n+1,30n+2)=d(d thuộc N*)
=>12n+1 chia hết d => 60n+5 chia hết d (1)
30n+2 chia hết d => 60n+4 chia hết d (2)
Lấy (1)-(2) : 60n+5- 60n -4=1 chia hết d => d thuộc ước của 1
=> 12n+1/30n+2 là phân số tối giản