K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

a) Vì trong 2 số tự nhiên liên tiếp luôn có 1 số chia hết cho 2 => tích của chúng chia hết cho 2 

b) + Nếu n lẻ thì n + 3 là số chẵn => n + 3 chia hết cho 2 => (n + 3).(n + 6) chia hết cho 2

+ Nếu n chẵn thì n + 6 là số chẵn => n + 6 chia hết cho 2 => (n + 3).(n + 6) chia hết cho 2

=> với mọi n thuộc N thì (n + 3).(n + 6) luôn chia hết cho 2

14 tháng 7 2016

1a) Gọi tích 2 stn liên tiếp là n(n+1)

n có dạng 2k hoặc 2k+1

  • n có dạng 2k => n(n+1) = 2k(2k+1) chia hết cho 2
  • n có dạng 2k+1 => n(n+1)=(2k+1)(2k+1+1)=(2k+1)(2k+2) chia hết cho 2

vậy tích của 2 stn liên tiếp chia hết cho 2

15 tháng 10 2019

Bài 1

Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là

n+n+1+n+2=3n+3=3(n+1) chia hết cho 3

Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là

n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2

Bài 2

(Xét tính chẵn hoặc lẻ của n)

+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2

+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2

=> (n+3)(n+6) chia hết cho 2 với mọi n

9 tháng 7 2018

Câu 5 là chỗ cuối cùng là chia hết cho 7 nha .mình quên ghi

11 tháng 7 2017

a, ta có 2 số liên tiếp lần lượt là n và n +1 <=> n^2 +n

giả thiết nếu n là lẻ thì lẻ +lẻ = chẵn; chia hết cho 2

nếu n là chắn thì chẵn bình phg  công chẵn sẽ ra chẵn => chia hết cho 2 

14 tháng 12 2017

https://olm.vn/hoi-dap/question/118678.htm  Ok nha Giờ bn giúp mk làm bài toán hình học lớ 6 đc k

31 tháng 12 2018

d,

 Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3 
nếu k chia hết cho 4 thì -> điều phài cm 
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm 
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm 
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm 

31 tháng 12 2018

c,

Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N ) 
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1 
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3 
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3 
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3