K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 7

1.

$4-n\vdots n+1$

$\Rightarrow 5-(n+1)\vdots n+1$

$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$

$\Rightarrow n\in \left\{0; 4\right\}$

AH
Akai Haruma
Giáo viên
18 tháng 7

2.

Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

21 tháng 7 2015

1) Số cần tìm là: 3

2)  2354 X 9 = 21186

3) ( "b" ở đâu ra vậy bạn ? )

4) Đăt S = 3^(n+2) - 2^(n+2) + 3^n - 2^n = 3^(n+2) + 3^n - [2^(n+2) + 2^n] 
Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10) 
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5) 
=> S chia hết cho 10.

23 tháng 11 2016

1+2-3-4+5+6-7-8+9+10-.........+2010-2011-2012+2013+2014-2015-2016+2017

= 1+(2-3-4+5)+(6-7-8+9)+(10-11-12+13)+.......+(2014-2015-2016+2017)

= 1 + 0 + 0 + 0 + .........+ 0

= 1

24 tháng 11 2016

Giả sử a là số nguyên tố chia 12 dư 9

=> a = 12k + 9 ( k \(\in\)N* )

= 3(4k + 3 ) chia hết cho 3

=> a chia hết cho 3. Mà a là số nguyên tố

=> a = 3

Mà 3 chia 12 dư 3

=> Điều giả sử trên là sai !

Vậy không có số nguyên tố nào chia 12 dư 9

1 tháng 2 2019

Mk chỉ tập trung giải câu b thui nha

a) p = 2

b) Ta có S= 5 + 52+53+...+52013

              => S = (5+52+53)+...+(52011+52012+52013)

          => S =5(1+5+25)+...+52011(1+5+25)

         => S = 5.31+....+52011.31

        => S = 31(5+54+...+52011)

       => S chia hết cho 31 (ĐPCM)

1 tháng 2 2019

a) Khi p = 2 thì p + 11 = 13 ( thỏa mãn )

Xét p > 2 :

Khi p = 2k+1 thì p + 11 = 2k + 12 = 2(k+6) mà p > 2 nên p + 11 > 2 nên khi p = 2k +1 thì p+ 11 là hợp số ( loại )

Vậy \(p=2\)

b) \(S=5+5^2+5^3+....+5^{2013}\)

Vì S có 2013 số hạng nên khi chia thành 1 nhóm sẽ có đủ số vì \(2013⋮3\)

\(\Rightarrow S=\left(5+5^2+5^3\right)+......+\left(5^{2011}+5^{2012}+5^{2013}\right)\)

     \(S=5\left(1+5+5^2\right)+.....+5^{2011}\left(1+5+5^2\right)\)

     \(S=5.31+.....+5^{2011}.31\)

     \(S=31\left(5+......+5^{2011}\right)\)

Vì \(S=5+5^2+5^3+....+5^{2013}\)nên \(S\inℕ\)và \(S=31.\left(5+.....+5^{2011}\right)\)

\(\Rightarrow S⋮31\)

Vậy \(S⋮31\left(ĐPCM\right)\)