Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng các số có 3 chữ số là .
\(\frac{\left(999+1\right)999}{2}=\frac{1000.999}{2}=499500\)
Vì 499500 có tận cùng là 1 nên chia hết cho 10
=> đpcm
Số các số có 3 chữ số là: (999 - 100) : 1 + 1 = 900 (số)
Tổng các số có 3 chữ số là: (999 + 100).900:2 = (999 + 100).450
Vì 450 chia hết cho 10 => (999 + 100).450 chia hết cho 10
=> tổng tất cả các số có 3 chữ số chia hết cho 10 (đpcm)
Bài 1 :
a)
Ta có: 87ab ⋮ 9 ⇔ (8 + 7 + a + b) ⁝⋮ 9 ⇔ (15 + a + b) ⋮ 9
Suy ra: (a + b) ∈ {3; 12}
Vì a – b = 4 nên a + b > 3. Suy ra a + b = 12
Thay a = 4 + b vào a + b = 12, ta có:
b + (4 + b) = 12 ⇔ 2b = 12 – 4
⇔ 2b = 8 ⇔ b = 4
a = 4 + b = 4 + 4 = 8
Vậy ta có số: 8784.
b)
⇒ (7+a+5+b+1) chia hết cho 3
⇔ (13+a+b) chia hết cho 3
+ Vì a, b là chữ số, mà a-b=4
⇒ a,b ∈ (9;5) (8;4) (7;3) (6;2) (5;1) (4;0).
Thay vào biểu thức 7a5b1, ta được :
ĐA 1: a=9; b=5.
ĐA 2: a=6; b=2.
Bài 2 :
Nếu 678a chia 5 dư 3 => a = 8 và 3
Ta có 2 số 6783 và 6788 vì 6783 ko chia hết cho 2
\(\Rightarrow\) trong số 6788 chia hết cho 2 nên a = 8
Các số có 2 chữ số là: 10, 11, 12,..., 99
=> Tổng của tất cả các số có 2 chữ số là:
10+11+12+....+99
Xét tổng trên có: (99-10):1+1=90 ( số hạng)
=> Tổng của các số có 2 chữ số là:
(99+10)*90:2=4905
Mà \(4905⋮5,4905⋮9\)
Vậy tổng của tất cả các số có 2 chữ số là 1 số chia hết cho 5 và 9
~Hok tốt~
Số các số có 2 chữ số là
\(\left(99-10\right):1+1=90\)
Tổng của các số có 2 chữ số là
\(\left(10+99\right)\times90:2=4905\)
Ta thấy \(\hept{\begin{cases}4905⋮5\\4905⋮9\end{cases}}\)
=> tổng các số có hai chữ số là 1 số chia hết cho 5 và 9.
a, Số các số có 3 chữ số là: (999-100):1+1=900(số)
Tổng các số có 3 chữ số là: (900+100).900:2=494550
Vì 494550 có chữ số tận cùng là 0 nên số này chia hết cho cả 2 và 5
de ta tra lop cau 2 nghe day
Để 32651+52a2a chia hết cho 3
Ta có ( 3+2+6+5+1+5+2+2+a+a ) chia hết cho 3
( 22+2a ) chia hết cho 3
( 2( 11+a ) chia hết cho 3
Vì 2 ko chia hết cho 3 => ( 11+a ) chia hết cho 3
=>a=( 1;4;7)
Bài này thì hỏi thầy Chiến đi cho nhanh.