Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HÌnh bạn tự vẽ nha
\(\text{a)Vì }BE\text{ là phân giác của }\Delta ABC:\)
\(\Rightarrow\widehat{ABE}=\widehat{EBH}\)
\(\text{Xét }\Delta ABE\text{ và }\Delta HBE\text{ có:}\)
\(BH=HA\left(gt\right)\)
\(BE\text{ chung}\)
\(\widehat{ABE}=\widehat{EBH}\left(cmt\right)\)
\(\Rightarrow\Delta ABE=\Delta HBE\left(c-g-c\right)\)
\(\Rightarrow\widehat{BAE}=\widehat{BHE}\text{(hai cạnh tương ứng)}\)
\(\text{Mà }\widehat{A}=90^0\left(gt\right)\)
\(\Rightarrow\widehat{H}=90^0\)
\(\Rightarrow EH\perp BC\)
\(\text{b)Vì }\Delta ABE=\Delta HBE\left(cmt\right)\)
\(\Rightarrow AE=EH\)
\(\Rightarrow\text{Khoảng cách từ điểm E đến H bằng khoảng cách từ điểm E đến A (1)}\)
\(\text{Ta có:}BA=BH\left(gt\right)\)
\(\Rightarrow\text{Khoảng cách từ điểm B đến H bằng khoảng cách từ điểm B đến A (2)}\)
\(\text{Từ (1) và (2)}\)
\(\Rightarrow\text{BE là đường trung trực của AH}\)
\(\text{c)Vì }\widehat{A}=90^0\left(gt\right)\)
\(\Rightarrow AB\perp AC\)
\(\Rightarrow\widehat{EAK}=90^0\)
\(\text{Vì }EH\perp BC\left(cmt\right)\)
\(\Rightarrow\widehat{EHC}=90^0\)
\(\text{Xét }\Delta AEK\text{ và }\Delta HEC\text{ có:}\)
\(\text{AE = EH (cmt)}\)
\(\widehat{EAK}=\widehat{EHC}=90^0\)
\(\widehat{AEK}=\widehat{HEC}\text{(đối đỉnh)}\)
\(\Rightarrow\Delta AEK=\Delta HEC\left(g-c-g\right)\)
\(\Rightarrow EK=EC\text{(2 cạnh tương ứng)}\)
\(\text{d)Ta có:}BA=BH\left(gt\right)\)
\(\Rightarrow\Delta\text{BAH cân tại B}\)
\(\Rightarrow\widehat{BAH}=\dfrac{180^0-\widehat{ABH}}{2}\left(3\right)\)
\(\text{Vì }\Delta AEK=\Delta HEC\left(cmt\right)\)
\(\Rightarrow\text{AK = HC ( 2 cạnh tương ứng)}\)
\(\text{Ta có:}\text{AK = BA + AK}\)
\(\text{BC = BH + HC}\)
\(\text{Mà BA = BH ( gt )}\)
\(\text{AK = HC ( cmt)}\)
\(\Rightarrow\text{BK = BC}\)
\(\Rightarrow\Delta\text{BKC cân tại B}\)
\(\Rightarrow\widehat{BKC}=\dfrac{180^0-\widehat{KBC}}{2}\left(4\right)\)
\(\text{Từ (3) và (4)}\)
\(\Rightarrow\widehat{BAH}=\widehat{BKC}\)
\(\text{Mà chúng đồng vị}\)
\(\Rightarrow\text{AH // BC}\)
\(\text{Ta có:}\Delta\text{BKC cân tại B}\)
\(\text{M là trung điểm BC }\)
\(\Rightarrow\text{BM là đường trung tuyến đồng thời là đường phân giác của }\Delta BKC\)
\(\text{Có BK là đường phân giác của tam giác BKC (cmt)}\)
\(\Rightarrow\text{BK là đường phân giác của}\widehat{KBC}\)
\(\text{Mà BE cũng là đường phân giác của}\widehat{BAH}\)
\(\Rightarrow\text{BE trùng BK hay ba điểm B ; E ; K thẳng hàng}\)
a, Xét tam giác ABE và tam giác HBE có
AB=HB(gt)
\(\widehat{ABE}\)=\(\widehat{HBE}\)(gt)
BE chung
\(\Rightarrow\)\(\Delta\)ABE=\(\Delta\)HBE(c.g.c)\(\Rightarrow\)\(\widehat{EAB}\)=\(\widehat{EHB}\)mà \(\widehat{EAB}\)=90 độ\(\Rightarrow\)\(\widehat{EHB}\)=90 độ
\(\Rightarrow\)EH vuông góc vs BC
a) Vì BE là tia phân giác của tam giác ABC
=> \(\widehat{ABE}=\widehat{EBC}\)hay \(\widehat{ABE}=\widehat{EBH}\)
* Xét tam giác ABE và tam giác HBE có :
+ )BA = BH ( gt)
+) \(\widehat{ABE}=\widehat{EBH}\) (cmt)
+)BE chung
=> tam giác ABE = tam giác HBE ( c-g-c)
-> \(\widehat{BAE}=\widehat{BHE}\)( hai cạnh tương ứng )
Mà \(\widehat{BAE}=90^0\)( \(\widehat{BAC}=90^0\))
-> \(\widehat{BHE}=90^0\)
=> BH vuông góc EH hay BC vuông góc EH ( đpcm)
b) Vì tam giác ABE = tam giác HBE (cmt)
=> AE = EH ( 2 cạnh tương ứng )
* Có : AE = EH ( cmt)
=> Khoảng cách từ điểm E đến H bằng khoảng cách từ điểm E đến A ( 1)
BA = BH ( gt )
=. Khoản cách từ điểm B đến điềm H bằng khoảng cách từ điểm B đến điểm A ( 2 )
Từ ( 1 ) và ( 2 ) => BE là đường trung trực của AH ( đpcm )
c) Vì tam giác ABC có \(\widehat{A}\)= \(90^0\) ( gt)
=> AB vuông góc AC hay AE vuông góc AK ( E e AC ; K e AB )
=>\(\widehat{EAK}=90^0\)
Vì EH vuông góc AC ( cmt)
=> \(\widehat{EHC}=90^0\)
Xét tam giác AEK và tam giác HEC có
AE = EH (cmt)
\(\widehat{EAK}=\widehat{EHC}=90^0\)
\(\widehat{AEK}=\widehat{HEC}\)(đối đỉnh)
=> tam giác AEK = tam giác HEC ( g-c-g)
=> EK = EC ( 2 cạnh tương ứng)
d) Có : BA = BH ( gt 0
=> tam giác BAH cân tại B
=. \(\widehat{BAH}=\frac{180^0-\widehat{ABH}}{2}\)( 3)
Vì tam giác AEK = tam giác HEC ( cmt )
=> AK = HC ( 2 cạnh tương ứng)
Có: AK = BA + AK
BC = BH + HC
Mà BA = BH ( gt )
AK = HC ( cmt)
=> BK = BC
=> Tam giác BKC cân tại B
=>\(\widehat{BKC}=\frac{180^0-\widehat{KBC}}{2}\)hay \(\widehat{BKC}=\frac{180^0-\widehat{ABH}}{^{ }2}\)( 4 )
Từ ( 3 ) và ( 4 ) => \(\widehat{BAH}=\widehat{BKC}\)
Mà 2 góc ở vị trí đồng vị
=> AH // BC ( đpcm)
e) Có : Tam giác BKC cân tại B
M là trung điểm BC
=> BM là đường trung tuyến đồng thời là đường phân giác của tam giác BKC
Có BK là đường phân giác của tam giác BKC (cmt)
=> BK là đường phân giác của\(\widehat{KBC}\)hay \(\widehat{BAH}\)
Mà BE cũng là đường phân giác của \(\widehat{BAH}\)
=> BE trùng BK hay ba điểm B ; E ; K thẳng hàng ( đpcm)
a: Xét ΔBAE và ΔBHE có
BA=BH
\(\widehat{ABE}=\widehat{HBE}\)
BE chung
Do đó: ΔBAE=ΔBHE
Suy ra: \(\widehat{BAE}=\widehat{BHE}=90^0\)
hay EH\(\perp\)BC
b: Ta có: BA=BH
EA=EH
DO đó; BE là đường trung trực của AH
c: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó: ΔAEK=ΔHEC
Suy ra: EK=EC
a: Xét ΔBAE và ΔBHE có
BA=BH
\(\widehat{ABE}=\widehat{HBE}\)
BE chung
DO đó: ΔBAE=ΔBHE
Suy ra: \(\widehat{BAE}=\widehat{BHE}=90^0\)
Ta có: EA=EH
mà EH<EC
nên EA<EC
b: Ta có: BA=BH
EA=EH
DO đó: BE là đường trung trực của AH
c: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó: ΔAEK=ΔHEC
SUy ra: EK=EC
a) Xét tam giác ABE và tam giác HBE có
\(AB=HB(gt)\)
\(\widehat{ABE} = \widehat{HBE} (gt)\)
\(BE\) chung
\(\Rightarrow\ \Delta ABE=\Delta HBE (c.g.c)\)
\(\Rightarrow \widehat{EAB}=\widehat{EHB}\)
Mà \(\widehat{EAB}=90^o\)
\(\Rightarrow\)\(\widehat{EHB}=90^o\)
\(\Rightarrow\)EH vuông góc với BC
Bài này mk giải cho bạn rồi nhé!
Vào đây:
https://hoc24.vn/hoi-dap/question/169564.html
https://hoc24.vn/hoi-dap/question/169591.html
2 cái lik đó.