K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2020

Câu d bài 1 là chứng minh gì vậy ? cm > 3AB

19 tháng 6 2020

Cô Nguyễn Linh Chi ơi câu d bài 1 là : CM : 2(AH+BK)>3AB

22 tháng 6 2020

1) d) Ta có: \(\Delta\)KHC cân tại H 

=> HK = CK 

=> AB = AC = 2Ck = 2HK 

=> AB = 2 HK 

Ta có: 

Qua H kẻ đường thẳng // với HA cắt AB tại T 

Xét \(\Delta\)KHA và \(\Delta\)ATK có: 

AK chung 

^HKA = ^TAK ( so le trong ) 

^HAK = ^TKA ( so le trong ) 

=> \(\Delta\)KHA = \(\Delta\)ATK 

=> AT = HK và KT = HA 

=> AB = 2HK = 2AT

Khi đó: AH + BK = KT + BK > BT = AB + AT 

=> 2 ( AH + BK ) > 2 AB + 2AT = 2AB + AB = 3AB 

Vậy 2 ( AH + BK) > 3AB

23 tháng 6 2020

2)  M I D E A P Q B C H

a)

  • Xét \(\Delta\)ADC và \(\Delta\)ABE có: 

AD = AB ( \(\Delta\)ADB cân tại A ) 

AC = AE ( \(\Delta\)ACE cân tại E) 

^DAC = ^BAE ( vì ^DAC = ^DAB + ^BAC = 90o + ^BAC  ; ^BAE = ^BAC + ^CAE = ^BAC + 90o ) 

=> \(\Delta\)ADC = \(\Delta\)ABE (1)

=> CD = EB 

  •  Gọi P; Q lần lượt là giao điểm của DC và BA và BE

(1) => ^ADC = ^ABE => ^ADP = ^PBQ (2)

Xét \(\Delta\)APD và \(\Delta\)PQB 

có: ^APD + ^ADP + ^PAD = ^PQB + ^PBQ + ^QPB  = 180 độ ( tổng 3 góc  trong 1 tam giác ) 

mà ^ADP = ^PBQ (theo (2)) ; ^APD = ^QPB ( đối đỉnh) 

=> ^PQB = ^PAD = ^BAD = 90 độ  ( \(\Delta\)ABD vuông ) 

=> DC vuông BE 

b) Trên mặt phẳng bờ DE không chứa A, qua D kẻ tia Dx // AE. Trên Dx lấy điểm M sao cho DM = AE 

Gọi giao điểm của DE và MA là I

Dễ dàng chứng minh được: \(\Delta\)DIM = \(\Delta\)EIA  (3) 

=> DM = AE = AC 

Lại có: ^MDA + ^DAE = ^MDE + ^EDA + ^DAE = ^DEA + ^EDA + ^DAE = 180 độ 

mà ^DAE + ^BAC = 180 độ 

=> ^MDA = ^BAC 

Xét \(\Delta\)ABC và \(\Delta\)DAM có: AB = DA ; AC = DM ; ^BAC = ^ADM 

=> \(\Delta\)ABC = \(\Delta\)DAM 

=> ^DAM = ^ABC 

=> ^DAM + ^DAB + ^BAH = ^ABC + 90o + ^BAH = 180 độ 

=> M; I; A; H thẳng hàng 

=> AH cắt DE tại I 

(3) => ID = IE => I là trung điểm của DE 

Do vậy AH đi qua trung điểm của DE 

1 tháng 5 2018

a,chứng minh CD=BE và CD vuông góc với BE

1 tháng 8 2020

HAHAHAHAHAHAHAHHAHAHAHAHAHAHAHAHAHHAHAHAHAHHAHAHAHAHHAHAAHHA

Bài 1 : Cho tam giác ABC có AB =6cm , AC = 8cm , BC = 10cm a) Chứng tỏ tam giác ABC vuông b) Gọi M là trung điểm BC . Kẻ MK vuông AC trên tia đối tia MH lấy K sao cho MK = MH chứng minh BK // AC c) BH cắt AG tại G là trọng tâm tam giác ABC Bài 2 : Cho tam giác ABC ở phía ngoài tam giác đó vẽ các tam giác vuông cân tại A là ACD và ACE a) Chứng minh CD = BE và CD vuông góc với BE b) Kẻ đường thẳng đi qua A vuông với BC tại...
Đọc tiếp

Bài 1 : Cho tam giác ABC có AB =6cm , AC = 8cm , BC = 10cm 

a) Chứng tỏ tam giác ABC vuông 

b) Gọi M là trung điểm BC . Kẻ MK vuông AC trên tia đối tia MH lấy K sao cho MK = MH chứng minh BK // AC 

c) BH cắt AG tại G là trọng tâm tam giác ABC 

Bài 2 : Cho tam giác ABC ở phía ngoài tam giác đó vẽ các tam giác vuông cân tại A là ACD và ACE 

a) Chứng minh CD = BE và CD vuông góc với BE 

b) Kẻ đường thẳng đi qua A vuông với BC tại H . Chứng minh AH đi qua đường thẳng DE . Lấy điểm K nằm trong tam giác ABD sao cho  góc ABH = 30 độ , AB = BK . Chứng minh chúng bằng nhau

Bài 3 : Cho tam giác ABC vuông ở C có góc A = 60 độ . Tia p/g của góc BAC cắt BC ở E , kẻ EK vuông góc với AB ( K thuộc AB ) . Kẻ BD vuông góc với AE ( D thuộc AE)

b) Chứng minh tam giác ACE = tam giác AKE và AE vuôngg góc với CK 

c) chứng minh EB > AC , 3 đường thẳng AC , BD ,, KE cùng đi qua 1 điểm 

 

2
28 tháng 6 2020

a) xét \(\Delta ABC\)

\(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=36+64=100\)

VÌ \(100=100\)

\(\Rightarrow BC^2=AB^2+AC^2\)

VẬY \(\Delta ABC\) VUÔNG TẠI A

28 tháng 6 2020

trong tam giác ABC ta có :

     AB2=62=36

     AC2=82=64

    BC2=102=100

ta thấy : 100=36+64 => BC2=AC2=AB2( định lý pytago đảo )

=> tam giác ABC vuông tại A 

CHÚC BẠN HỌC TỐT !!!