Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)đk:`2x-4>=0`
`<=>2x>=4`
`<=>x>=2.`
b)đk:`3/(-2x+1)>=0`
Mà `3>0`
`=>-2x+1>=0`
`<=>1>=2x`
`<=>x<=1/2`
c)`đk:(-3x+5)/(-4)>=0`
`<=>(3x-5)/4>=0`
`<=>3x-5>=0`
`<=>3x>=5`
`<=>x>=5/3`
d)`đk:-5(-2x+6)>=0`
`<=>-2x+6<=0`
`<=>2x-6>=0`
`<=>2x>=6`
`<=>x>=3`
e)`đk:(x^2+2)(x-3)>=0`
Mà `x^2+2>=2>0`
`<=>x-3>=0`
`<=>x>=3`
f)`đk:(x^2+5)/(-x+2)>=0`
Mà `x^2+5>=5>0`
`<=>-x+2>0`
`<=>-x>=-2`
`<=>x<=2`
a, ĐKXĐ : \(2x-4\ge0\)
\(\Leftrightarrow x\ge\dfrac{4}{2}=2\)
Vậy ..
b, ĐKXĐ : \(\left\{{}\begin{matrix}\dfrac{3}{-2x+1}\ge0\\-2x+1\ne0\end{matrix}\right.\)
\(\Leftrightarrow-2x+1>0\)
\(\Leftrightarrow x< \dfrac{1}{2}\)
Vậy ..
c, ĐKXĐ : \(\dfrac{-3x+5}{-4}\ge0\)
\(\Leftrightarrow-3x+5\le0\)
\(\Leftrightarrow x\ge\dfrac{5}{3}\)
Vậy ...
d, ĐKXĐ : \(-5\left(-2x+6\right)\ge0\)
\(\Leftrightarrow-2x+6\le0\)
\(\Leftrightarrow x\ge-\dfrac{6}{-2}=3\)
Vậy ...
e, ĐKXĐ : \(\left(x^2+2\right)\left(x-3\right)\ge0\)
\(\Leftrightarrow x-3\ge0\)
\(\Leftrightarrow x\ge3\)
Vậy ...
f, ĐKXĐ : \(\left\{{}\begin{matrix}\dfrac{x^2+5}{-x+2}\ge0\\-x+2\ne0\end{matrix}\right.\)
\(\Leftrightarrow-x+2>0\)
\(\Leftrightarrow x< 2\)
Vậy ...
1. b) \(\left(x\sqrt{\dfrac{6}{x}}+\sqrt{\dfrac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}\)
=\(\left(x\sqrt{\dfrac{6x}{x^2}}+\sqrt{\dfrac{6x}{9}}+\sqrt{6x}\right):\sqrt{6x}\)
=\(\left(\sqrt{6x}+\dfrac{1}{3}\sqrt{6x}+\sqrt{6x}\right):\sqrt{6x}\)
=\(\dfrac{7}{3}\sqrt{6x}:\sqrt{6x}=\dfrac{7}{3}\)
2.
P=\(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)(bn có ghi sai đề ko)
a) ĐKXĐ : \(x\ge1,x\ge2,x\ge0\)
b) P=\(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
=\(\dfrac{x-3\sqrt{x}-\sqrt{x}+3-2x+\sqrt{x}+4\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
=\(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\dfrac{1}{\sqrt{x}-2}\)
c) thay x= \(4-2\sqrt{3}\)vào P ta có :
\(\dfrac{1}{\sqrt{4-2\sqrt{3}}-2}=\dfrac{1}{\sqrt{3}-1-2}=\dfrac{1}{\sqrt{3}-3}\)
Mọi ngươi giúp em với ạ chứ em làm câu a Bài 1 và 2 ra kết quả dài quá :(
Bài 1:
a: \(P=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
\(=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)
b: Để P<1 thì P-1<0
\(\Leftrightarrow\dfrac{\sqrt{a}-4-\sqrt{a}+2}{\sqrt{a}-2}< 0\)
=>căn a-2>0
=>a>4
Bài 2:
\(=\sqrt{8-4\sqrt{3}}\cdot\sqrt{\dfrac{\sqrt{6}+\sqrt{2}}{\sqrt{6}-\sqrt{2}}}\)
\(=\sqrt{8-4\sqrt{3}}\cdot\sqrt{\dfrac{\left(\sqrt{6}+\sqrt{2}\right)^2}{6-2}}\)
\(=\left(\sqrt{6}-\sqrt{2}\right)\cdot\dfrac{\left(\sqrt{6}+\sqrt{2}\right)}{2}\)
\(=\dfrac{6-2}{2}=\dfrac{4}{2}=2\)
Bài 6:
a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)
=>x^2+4=12
=>x^2=8
=>\(x=\pm2\sqrt{2}\)
b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>x+1=1
=>x=0
c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)
=>\(\sqrt{2x}=2\)
=>2x=4
=>x=2
d: \(\Leftrightarrow2\left|x+2\right|=8\)
=>x+2=4 hoặcx+2=-4
=>x=-6 hoặc x=2
Bài 1:
a: \(A=\left|2a-1\right|-2a\)
TH1: a>=1/2
A=2a-1-2a=-1
TH2: a<1/2
A=1-2a-2a=1-4a
b: \(B=x-2y-\left|x-2y\right|\)
TH1: x>=2y
A=x-2y-x+2y=0
TH2: x<2y
A=x-2y+x-2y=2x-4y
c: \(=x^2+\left|x^2-4\right|\)
TH1: x>=2 hoặc x<=-2
\(A=x^2+x^2-4=2x^2-4\)
TH2: -2<x<2
\(A=x^2+4-x^2=4\)
d: \(D=2x-1-\dfrac{\left|x-5\right|}{x-5}\)
TH1: x>5
\(D=2x-1-1=2x-2\)
TH2: x<5
D=2x-1+1=2x
a, P=\(\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{\left(1-x\right)^2}{2}\)
\(P=\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\dfrac{\left(1-x\right)^2}{2}\)
\(P=\dfrac{x-\sqrt{x}-2-\left(x+\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\left(1-x\right)^2}{2}\)
\(P=\dfrac{-2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(x-1\right)^2}{2}\)
\(P=\dfrac{-\sqrt{x}\left(x-1\right)}{\sqrt{x}+1}=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=-\sqrt{x}\left(\sqrt{x}-1\right)=\sqrt{x}-x\)b,x=\(7-4\sqrt{3}=4-2.2\sqrt{3}+3=\left(2-\sqrt{3}\right)^2\)
Thay vào ta có \(P=\sqrt{\left(4-\sqrt{3}\right)^2}-\left(7-4\sqrt{3}\right)\)
\(P=\left|4-\sqrt{3}\right|-7-4\sqrt{3}=4-\sqrt{3}-7+4\sqrt{3}\)
\(P=-3+3\sqrt{3}\)
Câu 2:
a: f(1)=2
=>m-1+2m-3=2
=>3m=6
=>m=2
=>f(x)=x+1
=>f(2)=2+1=3
b: f(-3)=0
=>-3m+3+2m-3=0
=>m=0
=>f(x)=-x-3
=>f(x) nghịch biến
Câu 1:
a)
\(y=f\left(x\right)=2x^2\) | -5 | -3 | 0 | 3 | 5 |
f(x) | 50 | 18 | 0 | 18 | 50 |
b) Ta có: f(x)=8
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)
Ta có: \(f\left(x\right)=6-4\sqrt{2}\)
\(\Leftrightarrow2x^2=6-4\sqrt{2}\)
\(\Leftrightarrow x^2=3-2\sqrt{2}\)
\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)
hay \(x=\sqrt{2}-1\)
Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)
1. \(2M-N=\dfrac{2}{2-\sqrt{3}}-\sqrt{6}.\sqrt{2}=\dfrac{2-2\sqrt{3}\left(2-\sqrt{3}\right)}{2-\sqrt{3}}=\)\(\dfrac{2-4\sqrt{3}+6}{2-\sqrt{3}}=\dfrac{8-4\sqrt{3}}{2-\sqrt{3}}=4\)
Đáp án C
2. Ta có: A= \(-x+\sqrt{\left(6-x\right)^2}=-x+\left|6-x\right|\)
Mà x>6 \(\Rightarrow6-x< 0\)A=-x-6+x=-6
Đáp án C
3. Vẽ đồ thị hàm f(x) ta có:
Ta thấy f(2)<f(3), chọn Đáp án A
4.
Khi đó, bán kính của đường tròn bằng \(\dfrac{2}{3}\)đường cao của tam giác đều ABC
Ta có: \(R=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\)
Đáp án A
Câu 1: C
Câu 2: C
Câu 3: A
Câu 4: A