K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2018

Ta có: \(A.B.C=\frac{-1}{2}x^2yz^2\cdot\left(\frac{-3}{4}\right)xy^2z^2\cdot x^3y\)

\(=\left[\left(\frac{-1}{2}\right)\cdot\left(\frac{-3}{4}\right)\right]\left(x^2yz^2xy^2z^2x^3y\right)\)

\(=\frac{3}{8}x^6y^4z^4\)

Nếu cùng âm thì tích của chúng phải âm mà  \(A.B.C=\frac{3}{8}x^6y^4z^4\ge0\)

Vậy các đơn thức A,B,C không thể cùng nhận giá trị âm

14 tháng 3 2018

Giúp với!

29 tháng 6 2020

a) Giả sử A,B,C cùng nhận giá trị âm => A.B.C nhận giá trị âm

Mà ta có: A.B.C =  \(\left(-\frac{2}{3}x^2yz^2\right).\left(xy^2z^2\right)\left(-\frac{3}{5}x^3y^3\right)\)

           = \(\left[-\frac{2}{3}\cdot\left(-\frac{3}{5}\right)\right]\left(x^2.x.x^3\right)\left(y.y^2.y^3\right).\left(z^2.z^2\right)\)

      = \(\frac{2}{5}x^6y^6z^4\)nhận giá trị dương => điều giả sử là sai

=> A, V, C không thể cùng nhận giá trị âm

29 tháng 6 2020

b) Ta có: |2x - 4| \(\ge\)\(\forall\)x

 (y + 3)20 \(\ge\)\(\forall\)y

=> -12 - |2x - 4| - (y + 3)20 \(\le\)-12 \(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-4=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=2\\y=-3\end{cases}}\)

Vậy MaxM = -12 khi x = 2 và y = -3

6 tháng 6 2017

b/ Theo đề bài thì ta có:

\(\left\{{}\begin{matrix}f\left(1\right)=f\left(-1\right)\\f\left(2\right)=f\left(-2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a_4+a_3+a_2+a_1+a_0=a_4-a_3+a_2-a_1+a_0\\16a_4+8a_3+4a_2+2a_1+a_0=16a_4-8a_3+4a_2-2a_1+a_0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a_3+a_1=0\\4a_3+a_1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a_3=0\\a_1=0\end{matrix}\right.\)

Ta có: \(f\left(x\right)-f\left(-x\right)=a_4x^4+a_3x^3+a_2x^2+a_1x+a_0-\left(a_4x^4-a_3x^3+a_2x^2-a_1x+a_0\right)\)

\(=2a_3x^3+2a_1x=0\)

Vậy \(f\left(x\right)=f\left(-x\right)\)với mọi x

6 tháng 6 2017

a/ Áp dụng tính chất dãy tỷ số bằng nhau ta có:

\(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{2}\)

\(\Rightarrow c-a=-2\left(a-b\right)=-2\left(b-c\right)\)

Thế vào B ta được

\(B=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)

\(=4\left(a-b\right)\left(b-c\right)-\left[-2\left(a-b\right).\left(-2\right).\left(b-c\right)\right]\)

\(=4\left(a-b\right)\left(b-c\right)-4\left(a-b\right)\left(b-c\right)=0\)

Giả sử A, B, C cùng nhận giá trị âm

Mà ABC=\(-\frac{1}{2}x^2yz^2.\left(-\frac{3}{4}\right)xy^2z^2.x^3y=\frac{3}{8}x^6y^4z^4\ge0\)

=> 3 số cùng dương hoặc 3 số phải cùng âm

=> Trái với giả thiết

=> Đpcm

Giả sử A,B,C cùng nhận giá trị âm

Suy ra tích của chúng <o

\(ABC=\frac{-1}{2}x^2yz^2\frac{-3}{4}xy^2z^2x^3y=\frac{3}{8}x^6y^4z^4>0\)

Suy ra mâu thuẫn 

Suy ra.........................(đpcm)

23 tháng 12 2021

a)  Cho hàm số y = f(x) = -2x + 3.

Ta có: f(-2)= -2.(-2)+3

                 = 4+3=7

Ta có: f(0)= -2.0+3

                = 0+3=3

Ta có: f(\(\dfrac{-1}{2}\))= -2.(-\(\dfrac{1}{2}\))+3

                    =\(\dfrac{-2.\left(-1\right)}{2}\)+3

                    =\(\dfrac{2}{2}\)+3

                    = 1+3= 4

Vậy  f(-2)=7;f(0)=3;f( \(\dfrac{-1}{2}\))=4

b) Cho hàm số y = f(x) = -2x + 3

     mà f(x)=5

     Suy ra:        f(x) = -2x + 3=5

     hay              -2x + 3=5

                         -2x=5-3

                         -2x=2

                          x=2:(-2)

                          x= -1

 

         Cho hàm số y = f(x) = -2x + 3

               mà f(x)=1

              Suy ra:        f(x) = -2x + 3=1

                hay              -2x + 3=1

                                    -2x=1-3

                                    -2x= -2

                                    x= -2:(-2)

                                    x=1

       Vậy f(x)=5 thì x= -1 và f(x) = 1 thì x=1.

 

AH
Akai Haruma
Giáo viên
23 tháng 12 2021

Lời giải:

a.

$f(-2)=(-2)(-2)+3=7$

$f(0)=(-2).0+3=3$

$f(\frac{-1}{2})=(-2).\frac{-1}{2}+3=4$

b.

$f(x)=-2x+3=5$

$\Rightarrow -2x=2$

$\Rightarrow x=-1$

$f(x)=-2x+3=1$

$\Rightarrow -2x=1-3=-2$

$\Rightarrow x=1$

24 tháng 7 2017

\(A=-\dfrac{1}{2}x^2yz^2\)

\(x^2\ge0\Rightarrow-\dfrac{1}{2}x^2\le0\)

\(yz^2\) nhận giá trị âm khi \(y\) âm

Vậy A âm khi \(y\) nhận giá trị âm

\(B=-\dfrac{3}{4}xy^2z^2\)

\(z^2\ge0\) \(y^2\ge0\)

B đạt âm khi x âm

\(C=x^3y\)

C âm khi x âm hoặc y âm

Nhưng nếu chỉ có 1 trong 2 âm thì không thỏa mãn điều kiện của A và B

Vậy các đơn thức trên không thể cùng âm

\(\rightarrowđpcm\)

24 tháng 7 2017

\(z^2\ge0\forall z\) nên dấu của A và B không phụ thuộc vào giá trị của z.

*Xét \(x< 0;y< 0\): A, B, C \(\ge0\)

*Xét \(x< 0;y>0;\): B \(\ge0\)

*Xét \(x>0;y< 0\): A \(\ge0\)

*Xét \(x>0;y>0\): C \(\ge0\)

*Xét \(x=0\) hoặc \(y=0\): A = B = C = 0

Qua đó, ta thấy không có trường hợp nào cả 3 đơn thức đều nhận giá trị âm.

Vậy ...