K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
11 tháng 7 2021

Câu 1: Gọi số học sinh mỗi khối \(7,8,9\)lần lượt là \(x,y,z\)học sinh \(x,y,z\inℕ^∗\).

Vì mỗi học sinh khối \(7,8,9\)trồng được theo thứ tự là \(2,3,4\)cây và số cây mỗi khối trồng được bằng nhau nên 

\(2x=3y=4z\Leftrightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được: 

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{130}{13}=10\)

\(\Leftrightarrow\hept{\begin{cases}x=10.6=60\\y=10.4=40\\z=10.3=30\end{cases}}\)(tm) 

DD
11 tháng 7 2021

Câu 2: 

Có \(s=vt\)nên \(v\)và \(t\)là hai đại lượng tỉ lệ nghịch. 

Vận tốc ô tô tăng lên \(20\%\)thì thời gian thực tế bằng số phần thời gian dự định đi trên nửa quãng đường đó là: 

\(1\div\left(1+20\%\right)=\frac{5}{6}\)

Thời gian dự định đi nửa quãng đường là: 

\(10\div\left(6-5\right)\times6=60\)(phút) 

Thời gian thưc tế ô tô đi từ A đến B là: 

\(60\times2-10=130\)(phút) 

4 tháng 12 2016

kết quả là : 2H45'

tk nha bạn

thank you bạn

6 tháng 7 2018

Gọi vận tốc của ô tô nửa đoạn đường đầu là x, nửa đoạn đường cuối là y (y > x > 0)

Theo đề bài ta có: y = 20%x + x = \(\frac{1}{5}\)x + x = \(\frac{6}{5}\)x

\(\frac{x}{y}\)=\(\frac{5}{6}\) (1)

Gọi thời gian đi nửa đoạn đường đầu ô tô đi là t1, thời gian nửa đoạn đường sau là t2 (t1 > t2 > 0)

=> t1 - t2 = \(\frac{10}{60}\)=\(\frac{1}{6}\)(h)

Ta có: x.t1 = y.t2 (cùng bằng \(\frac{1}{2}\) quãng đường AB)

\(\frac{x}{y}\)=\(\frac{t2}{t1}\) kết hơp với (1) \(\frac{t2}{t1}\)=\(\frac{5}{6}\)\(\frac{t2}{5}\)=\(\frac{t1}{6}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{t2}{5}\)=\(\frac{t1}{6}\)=\(\frac{t1-t2}{6-5}\)=\(\frac{1}{6}\)

\(\hept{\begin{cases}t2=\frac{1}{6}.5=\frac{5}{6}\\t1=\frac{1}{6}.6=1\end{cases}}\)

Vậy thời gian thực tế ô tô đi hết quãng đường AB là:

t1 + t2 = 1 + \(\frac{5}{6}\)=\(\frac{11}{6}\)= 1h50'

6 tháng 6 2015

Trên 2/3 đoạn đường còn lại, ô tô tăng vận tốc thêm 20% so với vận tốc dự kiến.

20% = 20/100 = 1/5.

Gọi vận tốc dự kiến là 5 phần, vận tốc đi 2/3 đoạn cuối sẽ là:

     5 + 1 = 6 phần

Tỉ lệ vận tốc thực đi và vận tốc thực dự kiến là: 6/5

Thời gian đi tỉ lệ nghịch với vận tốc. Thời gian thực đi/thời gian dự kiến = 5/6.

Gọi thời gian dự kiến đi trong đoạn đường còn lại là 6 phần

Thì thời gian thực đi trong đoạn đường còn lại là 5 phần.

Hiệu số phần là: 6 - 5 = 1 (phần)

1 phần này tương ứng với 20 phút = 1/3 giờ.

Suy ra thời gian dự kiến đi đoạn đường còn lại là 6 phần x 1/3 giờ = 2 giờ.

Vậy đi 2/3 quãng đường AB dự kiến hết 2 giờ => đi cả quãng đường hết 2 x 3/2 = 3 giờ.

6 tháng 6 2015

thưa Tiểu Thư

thời gian dự định ô tô đã đu từ A đến B là x(giờ) 

vận tốc dự định là: AB / x (km/h) 
Sau khi đi được 1/3 quãng đường (AB/3) , thời gian đi quãng đường này là: 

(AB/3) / (AB/x) = x/3 (h) 

Vận tốc oto sau đó là: AB/x + 25%*AB/x = 5AB/4x (km/h) 

thời gian để đi 2/3 quãng đg còn lại (2AB/3) là: (2AB/3) / (5AB/4x) = 8x/15 (h) 

otô đến B sớm hơn 10 phút = 1/6 h nên ta có: 
x - (x/3 + 8x/15) = 1/6 

<=> x - 13x/15 = 1/6 

<=> 2x/15 = 1/6 

<=> x = 1.25 h = 1h15' = 75' 

=> thời gian thực tế là: 75 - 10 = 65 phút

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

 ~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

4 tháng 11 2017

ho thi to uyen

65 phút nha bạn

k tui nha

thank

7 tháng 4 2023

Gọi vận tốc của ô tô trong nửa quãng đường đầu là v (km/h; a > 0)

vận tốc của ô tô trong nửa quãng đường còn lại là: v + 20%v = \frac{6}{5}v56​v

Đổi 10' = \frac{1}{6}h61​h

Gọi thời gian ô tô đi trong nửa quãng đường đầu là t (h; t > 0)

thời gian ô tô đi trong nửa quãng đường còn lại là: t - \frac{1}{6}61​

Vì cùng đi hết nửa quãng đường AB nên thời gian và vận tốc là 2 đại lượng tỉ lệ nghịch

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\frac{t}{6}=\frac{t-\frac{1}{6}}{5}=\frac{t-\left(t-\frac{1}{6}\right)}{6-5}=\frac{1}{6}6t​=5t−61​​=6−5t−(t−61​)​=61​

\Rightarrow\begin{cases}t=\frac{1}{6}.6=1\\t-\frac{1}{6}=\frac{1}{6}.5=\frac{5}{6}\end{cases}⇒{t=61​.6=1t−61​=61​.5=65​​

Vậy thời gian ô tô đi từ A -> B là:

t+\left(t-\frac{1}{6}\right)=1+\frac{5}{6}=\frac{11}{6}\left(h\right)t+(t−61​)=1+65​=611​(h)

6 tháng 12 2016

kết bạn với mk nhé

6 tháng 7 2018

Gọi vận tốc của ô tô nửa đoạn đường đầu là x, nửa đoạn đường cuối là y (y > x > 0)

Theo đề bài ta có: y = 20%x + x = \(\frac{1}{5}\)x + x = \(\frac{6}{5}\)x

\(\frac{x}{y}\)=\(\frac{5}{6}\) (1)

Gọi thời gian đi nửa đoạn đường đầu ô tô đi là t1, thời gian nửa đoạn đường sau là t2 (t1 > t2 > 0)

=> t1 - t2 = \(\frac{10}{60}\)=\(\frac{1}{6}\)(h)

Ta có: x.t1 = y.t2 (cùng bằng \(\frac{1}{2}\) quãng đường AB)

\(\frac{x}{y}\)=\(\frac{t2}{t1}\) kết hơp với (1) \(\frac{t2}{t1}\)=\(\frac{5}{6}\)\(\frac{t2}{5}\)=\(\frac{t1}{6}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{t2}{5}\)=\(\frac{t1}{6}\)=\(\frac{t1-t2}{6-5}\)=\(\frac{1}{6}\)

\(\hept{\begin{cases}t2=\frac{1}{6}.5=\frac{5}{6}\\t1=\frac{1}{6}.6=1\end{cases}}\)

Vậy thời gian thực tế ô tô đi hết quãng đường AB là:

t1 + t2 = 1 + \(\frac{5}{6}\)=\(\frac{11}{6}\)= 1h50'

14 tháng 2 2018

bạn Đỗ Pham Thuỳ Dương cũng thế

18 tháng 2 2018

làm nhanh cho m chép